Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abhängigkeit kann ein evolutionärer Vorteil sein

07.11.2016

An ihre Umwelt angepasste und von anderen abhängige Bakterien wachsen besser: Es ist eine weitverbreitete Annahme, dass es für Lebewesen vorteilhaft ist möglichst unabhängig von anderen zu sein. Einem Forscherteam des Max-Planck-Instituts für chemische Ökologie ist es nun gelungen experimentell zu zeigen, dass es ganz im Gegenteil für Bakterien sinnvoll sein kann ihre Autonomie zur Herstellung von Stoffen aufzugeben und sich von anderen abhängig zu machen. Dies bedeutet, dass nicht nur der Erwerb neuer Eigenschaften, sondern auch der Verlust von bestimmten Fähigkeiten die evolutionäre Anpassung von Bakterien an die Umwelt – und möglicherweise auch anderen Organismen – vorantreibt.

Es ist schon seit längerem bekannt, dass gentechnisch veränderte Bakterien, die einen bestimmten Stoff nicht mehr selbst herstellen können, diesen jedoch von Quellen in ihrer Umwelt erhalten können, deutlich besser wachsen, als Bakterien, die alles selbst herstellen (siehe Pressemeldung Arbeitsteilung im Reagenzglas vom 2.12.2013). Christian Kost, Leiter der Studie und inzwischen Professor an der Universität Osnabrück, wollte daher wissen, ob auch durch natürliche Selektion der Verlust von Eigenschaften begünstigt wird und Bakterien damit abhängiger von ihrer Umwelt werden.


Folge natürlicher Auslese in Bakterienpopulationen: Ein Teil bleibt unabhängig, während andere Bakterien Fähigkeiten verlieren und von autonomen, Aminosäuren produzierenden Zellen abhängig werden.

Glen D’Souza, Christian Kost / Max-Planck-Institut für chemische Ökologie

Um dieser Frage nachzugehen, kultivierten er und sein Doktorand Glen D’Souza das Darmbakterium Escherichia coli für mehrere Generationen unter optimalen Nährstoffbedingungen. Die Kultur wurde regelmäßig in frische Nährlösung überführt und bei jedem dieser Schritte wurde auch eine Probe genommen, um die Fähigkeiten der Bakterien sowie deren Erbsubstanz zu untersuchen.

Die Ergebnisse bestätigten die Vermutung: Bakterien, die ursprünglich autonom waren, verloren ihre Fähigkeiten zur Herstellung von Stoffen, wie beispielsweise Aminosäuren. Sie wurden damit von ihrer Umwelt abhängig, die mit diesen Nährstoffen angereichert war. „Zu unserer Überraschung fanden wir das gleiche Ergebnis, wenn keine Nährstoffe extern zugegeben wurden“, erläutert Glen D’Souza, Erstautor der Studie. „Die Bakterien teilten sich in zwei Gruppen: Eine Gruppe war nach wie vor autonom, während die andere von diesen autonomen Bakterien abhängig wurde, die die Stoffe noch selbst herstellen konnten.“

Der Verlust von Merkmalen wurde nicht nur bei Bakterien beobachtet, sondern ist auch für andere Gruppen von Lebewesen bekannt. So kann auch der Mensch viele Vitamine nicht selbst herstellen, sondern ist dafür auf seine Nahrung oder vitaminproduzierende Bakterien im Darm angewiesen. Auch viele Krankheitserreger brauchen für ihre Vermehrung Stoffe, die nur ihr Wirt produziert. Bisher war weitgehend unklar, warum Lebewesen in Wechselwirkung mit ihrer Umwelt ihre Selbständigkeit aufgeben und sich damit in eine Abhängigkeit von anderen Organismen begeben. Die Studie zeigt nun, dass der Verlust von Eigenschaften entwicklungsgeschichtlich vorteilhaft sein kann und dadurch die evolutionäre Anpassung vorantreibt.

„Es gab noch weitere Ergebnisse, mit denen wir nicht gerechnet haben. Die Erbsubstanz der abhängigen Bakterien war nicht nur an den Stellen verändert, die direkt an der Herstellung der Aminosäuren beteiligt sind, sondern es waren auch Gene verändert, die solche Stoffwechselprozesse über aktivierende oder hemmende Proteine steuern“, berichtet Christian Kost. Das bedeutet, dass die gleiche Anpassung in der Bakterienpopulation auf unterschiedliche Weise erreicht werden kann. In der Studie fand sich nur eine einseitige Anpassung einer Gruppe von Bakterien, die von einer anderen abhängig wurde. Die Autoren sind sich aber sicher, dass bei einer längeren Versuchsdauer auch gegenseitige und wesentlich komplexere Abhängigkeiten entstanden wären. Das Experiment soll daher noch weiter fortgeführt werden. Natürliche Selektion hängt nicht nur von der genetischen Ausstattung, sondern auch von der Populationsgröße ab. In der Natur schwankt die Größe von Bakteriengemeinschaften sehr stark in Abhängigkeit von deren Lebensstil. Daher möchte das Team herausfinden, wie die Größe von Bakterienpopulationen die Entwicklung von Abhängigkeit und damit die Veränderung ihrer Genome beeinflusst.

Ein schwieriges Problem in der biologischen Forschung ist die Unkultivierbarkeit der allermeisten Bakterienarten. Die Ergebnisse der neuen Studie tragen zu einer Erklärung dieses Phänomens bei: Bakterienpopulationen entwickeln sehr schnell metabolische Abhängigkeiten von ihrer Umgebung, die sich in einer Veränderungen des bakteriellen Genoms manifestieren. Metagenomische Analysen von Umwelt-proben, die die ökologischen Wechselwirkungen mikrobieller Lebens-gemeinschaften in ihrer natürlichen Umgebung einbeziehen, könnten helfen, dieses Problem zu lösen.

Auch in eher anwendungsorientierten Zusammenhängen sind die Forschungs-ergebnisse von Interesse. Bakterielle Lebensgemeinschaften spielen eine wichtige Rolle für die Gesundheit von Menschen, Pflanzen und Tieren. Metabolische Kooperation, also die Frage, wie sich Bakterien am wechselseitigen Stoffaustausch beteiligen, könnte ein wichtiges Kriterium bei der Zusammenstellung solcher Gemeinschaften für eine Anwendung in der Landwirtschaft und auch im Gesundheitswesen sein. Bakterien könnten so ausgewählt werden, dass sie entweder das Wachstum oder die Abwehr gegen Krankheitserreger unterstützen. [KG/AO]

Originalveröffentlichung:
D’Souza, G., Kost, C. (2016). Experimental evolution of metabolic dependency in bacteria. PLOS Genetics. DOI: 10.1371/journal.pgen.1006364
http://dx.doi.org/10.1371/journal.pgen.1006364

Weitere Informationen:
Prof. Dr. Christian Kost, Abteilung Ökologie, Fachbereich Biologie, Universität Osnabrück, Barbarastraße 13, 49076 Osnabrück, Tel: Tel. +49 541 969-2853, E-Mail christiankost@gmail.com

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie