Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

A Macromolecular Shredder for RNA

04.02.2013
Max Planck Researchers unravel the structure of the machinery for RNA disposal

Much in the same way as we use shredders to destroy documents that are no longer useful or that contain potentially damaging information, cells use molecular machines to degrade unwanted or defective macromolecules.


The crystal structure of a complete eukaryotic RNA Exosome complex reveals how it recognizes and processes its substrate. RNA (black) is recognized and unwound by the cap proteins (yellow, beige, orange), threaded inside the barrel (grey) and targeted to the active site of the catalytic subunit (in violet), where processive degradation occurs.
Graphics: Debora L. Makino/Copyright: MPI of Biochemistry

Scientists of the MPI of Biochemistry have now decoded the structure and the operating mechanism of the Exosome, a macromolecular machine responsible for degradation of ribonucleic acids (RNAs) in eukaryotes.

One of the functions of RNAs is to permit translation of the genomic information into proteins. The results of the studies now published in Nature show that the structural architecture and the main operation mode of the Exosome are conserved in all domains of life.

Any errors that occur during the synthesis of RNA molecules or unwanted accumulation of RNAs can be damaging to the cell. The elimination of defective RNAs or of RNAs that are no longer needed are therefore key steps in the metabolism of a cell. The Exosome, a multi-protein complex, is a key machine that shreds RNA into pieces. In addition, the Exosome also processes certain RNA molecules into their mature form. However, the molecular mechanism of how the Exosome performs these functions has been elusive.

A ubiquitous molecular shredder

Debora Makino, a postdoctoral researcher in the Research Department led by Elena Conti has now obtained an atomic resolution picture of the complete eukaryotic Exosome complex bound to an RNA molecule. The structure of this complex allowed the scientists to understand how the Exosome works.

“It is quite an elaborate machine: the Exosome complex forms a hollow barrel formed by nine different proteins through which RNA molecules are threaded to reach a tenth protein, the catalytic subunit that then shreds the RNA into pieces,” says Debora Makino. The barrel is essential for this process because it helps to unwind the RNA and prepares it for shredding. “Cells lacking any of the ten proteins do not survive and this shows that not only the catalytic subunit but also the entire barrel is critical for the function of the Exosome,” Makino explains.

The RNA-binding and threading mechanism used by the Exosome in eukaryotes is very similar to that of the Exosome in bacteria and archaebacteria that the researchers had structurally characterized in earlier studies. “Although the chemistry of the shredding reaction in eukaryotes is very different from that used in bacteria and archaebacteria, the channeling mechanism of the Exosome is conserved, and conceptually similar to the channeling mechanism used by the Proteasome, a complex for shredding proteins,” says Elena Conti.

In the future, the researchers want to understand how the Exosome is selectively targeted by the RNAs earmarked for degradation and how it is regulated in the different cellular compartments.

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/conti/
http://www.biochem.mpg.de/en/news/pressroom/index.html

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakompakter Photodetektor

Der Datenverkehr wächst weltweit. Glasfaserkabel transportieren die Informationen mit Lichtgeschwindigkeit über weite Entfernungen. An ihrem Ziel müssen die optischen Signale jedoch in elektrische Signale gewandelt werden, um im Computer verarbeitet zu werden. Forscher am KIT haben einen neuartigen Photodetektor entwickelt, dessen geringer Platzbedarf neue Maßstäbe setzt: Das Bauteil weist eine Grundfläche von weniger als einem Millionstel Quadratmillimeter auf, ohne die Datenübertragungsrate zu beeinträchtigen, wie sie im Fachmagazin Optica nun berichten. (DOI: 10.1364/OPTICA.3.000741)

Die neuentwickelten Photodetektoren, die weltweit kleinsten Photodetektoren für die optische Datenübertragung, eröffnen die Möglichkeit, durch integrierte...

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: Neues Forschungsnetzwerk für Mikrobiomforschung

Mikroben und Viren haben weitreichenden Einfluss auf die Gesundheit von Mensch und Tier. Die neu gegründete "Austrian Microbiome Initiative" (AMICI) fördert die nationale Mikrobiomforschung und vernetzt MedizinerInnen und ForscherInnen verschiedenster Fachrichtungen zur Nutzung von Synergien.

Bakterien, Archaeen, Pilze, Viren – Milliarden von Mikroorganismen leben in Symbiose in und auf Menschen und Tieren. Diese mikroskopisch kleinen Lebewesen...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Superschneller Internetfunk dank Terahertz-Strahlung

Wissenschaftler aus Dresden und Dublin haben einen vielversprechenden technologischen Ansatz gefunden, der Notebooks und anderen mobilen Computern in Zukunft deutlich schnellere Internet-Funkzugänge ermöglichen könnte als bisher. Die Teams am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und am irischen Trinity College Dublin brachten hauchdünne Schichten aus einer speziellen Verbindung von Mangan und Gallium dazu, sehr effizient Strahlung im sogenannten Terahertz-Frequenzbereich auszusenden. Als Sender in WLAN-Funknetzen eingesetzt, könnten die höheren Frequenzen die Datenraten zukünftiger Kommunikations-Netzwerke spürbar erhöhen.

„Wir halten diesen Ansatz für technologisch sehr interessant“, betont Dr. Michael Gensch, Leiter einer Arbeitsgruppe am HZDR, die sich mit den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsjahr Meere und Ozeane

27.07.2016 | Veranstaltungen

8. Forum Energie

26.07.2016 | Veranstaltungen

Kongress für Molekulare Medizin: Krankheiten interdisziplinär verstehen und behandeln

20.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ich packe meinen Koffer und nehme mit: Sonnenschutz und ein gutes Gewissen

27.07.2016 | Unternehmensmeldung

Intelligente Mobilität

27.07.2016 | Energie und Elektrotechnik

Neues Verfahren fügt Bleche besser zusammen

27.07.2016 | Verfahrenstechnologie