Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

15.02.2013
Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth.


Green crystals, millionths of a millimeter in size, preserve the molecular structure and activity of photosystem II, the molecule that photoxidizes water into molecular oxygen. (Image courtesy of Jan Kern, Berkeley Lab)

A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis.

“This is the first time that femtosecond X-ray pulses have been used for the simultaneous collection of both X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) at room temperature of a metalloenzyme crystal,” says Junko Yano, a chemist with Berkeley Lab’s Physical Biosciences Division who was one of the leaders of this research. “Collecting both diffraction and spectroscopy data from the same crystal under the same conditions is required for a detailed understanding of the mechanisms behind metalloenzyme catalysis.”

Yano is a corresponding author, along with Vittal Yachandra, also a chemist with Berkeley Lab’s Physical Biosciences Division, and Uwe Bergmann, a physicist with SLAC, of a paper about this research in the journal Science. The paper is titled “Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature.” (See below for full list of co-authors.)

Photosystem II, a large protein complex in green plants, algae and cyanobacteria, is the only known biological system able to harness sunlight for the oxidation of water into molecular oxygen. Photooxidation of water by photosystem II is responsible for most of the oxygen in Earth’s atmosphere. At the core of photosystem II is a manganese-calcium (Mn4Ca) complex that when energized by solar photons catalyzes a four photon-step cycle of oxidation states (S1-to-S4) that ultimately yield molecular oxygen. Scientists need to observe intact X-ray crystallography of the Mn4Ca ion in action but the molecule is highly sensitive to radiation.
“X-ray damage to metalloenzyme crystals has been a big issue for scientists even when the crystals were imaged at cryogenic temperatures,” Yachandra says. “The LCLS is the world’s only source of X-rays at this time capable of providing femtosecond pulses at the high intensities that enabled us to image intact photosystem II crystals before they were destroyed by exposure to the X-ray beams.”

SLAC’s LCLS is an X-ray free electron laser (XFEL) powered by a two-mile-long linear accelerator (or linac) that generates pulses of X-ray light on a femtosecond timescale. These pulses are more than a billion times brighter than those from the most powerful synchrotrons. SLAC is operated by Stanford University on behalf of DOE.

With their simultaneous XRD/XES experiments, Yano, Yachandra and their colleagues were able to observe the geometric structure and follow changes in the electronic structure of the Mn4Ca catalyst as they pumped the photosystem II crystal with visible-light laser pulses to simulate solar photons.

“We were able to unequivocally show that both the photosystem II complex and the Mn4Ca complex remain intact through the first two steps (S1 and S2) of the photooxidation process,” says Yachandra.

Says Nicholas Sauter, Berkeley Lab computer scientist and a co-author of the study, “To be able to draw these conclusions, we’ve developed new software tools and are learning how to process the large amounts of data generated by studies such as this in real time.”

For the next phase of this research, the researchers plan to study the final two steps in the photosystem II water-splitting process. Understanding how photosystem II is able to split water molecules into oxygen, electrons and hydrogen ions is crucial to the development of an effective and efficient artificial version of photosynthesis that could produce liquid fuels from nothing more than sunlight, carbon dioxide and water.

“Getting critical snapshots of the final photon steps in the photosystem II machinery would really answer all of the questions we have at the moment about how this system works,” says Jan Kern, a chemist with Berkeley Lab’s Physical Biosciences Division and SLAC who is the first author of the Science paper.

Says Yano, “We’re interested in understanding the design principles in natural photosynthesis, which can only be obtained by collecting data from all the states and that will be useful for making artificial light-driven catalysts for water-splitting.”

Beyond photosystem II and photosynthesis, the Berkeley Lab/SLAC team has demonstrated that simultaneous XRD and XES studies using ultra-short ultra-bright X-ray pulses can be used for future time-resolved studies of light-driven structural changes within protein and metal cofactors, and of chemical dynamics at the catalytic metal centers of metalloenzymes under functional conditions.

“We expect that this method will be applicable to many metalloenzymes, including those that are known to be very sensitive to X-ray photo-reduction and radiation damage, and over a wide range of time scales, starting with femtoseconds,” Yano says.

Other authors of the Science paper were Roberto Alonso-Mori, Rosalie Tran, Johan Hattne, Richard Gildea, Nathaniel Echols, Carina Glöckner, Julia Hellmich, Hartawan Laksmono, Raymond Sierra, Benedikt Lassalle-Kaiser, Sergey Koroidov, Alyssa Lampe, Guangye Han,Sheraz Gul, Dörte DiFiore, Despina Milathianaki, Alan Fry, Alan Miahnahri, Donald Schafer, Marc Messerschmidt, Marvin Seibert, Jason Koglin, Dimosthenis Sokaras, Tsu-Chien Weng, Jonas Sellberg, Matthew Latimer, Ralf Grosse-Kunstleve, Petrus Zwart, William White, Pieter Glatzel, Paul Adams, Michael Bogan, Garth Williams, Sébastien Boutet, Johannes Messinger and Athina Zouni.

In addition to Berkeley Lab and SLAC, other institutions participating in this study were the Technical University Berlin in Germany, Umeå and Stockholm Universities in Sweden, and the European Synchrotron Radiation Facility in France.

This work was supported by the DOE’s Office of Science, the National Institutes of Health, the German Research Foundation (DFG), the Alexander von Humbolt Foundation, Umea University, the K&A Wallengberg Foundation, and the Swedish Energy Agency.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

LCLS is supported by DOE’s Office of Science. SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

Die arktische Stratosphäre war in diesem Winter bisher außergewöhnlich kalt, damit sind alle Voraussetzungen für das Auftreten eines starken Ozonabbaus in den nächsten Wochen gegeben. Diesen Schluss legen erste Ergebnisse der vom Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne POLSTRACC nahe, die seit Ende 2015 in der Arktis läuft. Eine wesentliche Rolle spielen dabei vertikal ausgedehnte polare Stratosphärenwolken, die zuletzt weite Bereiche der Arktis bedeckten: An ihrer Oberfläche finden chemische Reaktionen statt, welche den Ozonabbau beschleunigen. Diese Wolken haben die Klimaforscher nun ungewöhnlicherweise bis in den untersten Bereich der Stratosphäre beobachtet.

„Weite Bereiche der Arktis waren über einen Zeitraum von mehreren Wochen von polaren Stratosphärenwolken zwischen etwa 14 und 26 Kilometern Höhe bedeckt –...

Im Focus: AIDS-Impfstoffproduktion in Algen

Pflanzen und Mikroorganismen werden vielfältig zur Medikamentenproduktion genutzt. Die Produktion solcher Biopharmazeutika in Pflanzen nennt man auch „Molecular Pharming“. Sie ist ein stetig wachsendes Feld der Pflanzenbiotechnologie. Hauptorganismen sind vor allem Hefe und Nutzpflanzen, wie Mais und Kartoffel – Pflanzen mit einem hohen Pflege- und Platzbedarf. Forscher um Prof. Ralph Bock am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam wollen mit Hilfe von Algen ein ressourcenschonenderes System für die Herstellung von Medikamenten und Impfstoffen verfügbar machen. Die Praxistauglichkeit untersuchten sie an einem potentiellen AIDS-Impfstoff.

Die Produktion von Arzneimitteln in Pflanzen und Mikroorganismen ist nicht neu. Bereits 1982 gelang es, durch den Einsatz gentechnischer Methoden, Bakterien so...

Im Focus: Einzeller mit Durchblick: Wie Bakterien „sehen“

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

 

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: Weltweit genaueste optische Einzelionen-Uhr

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 E-18. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Frauen in der digitalen Arbeitswelt: Gestaltung für die IT-Branche und das Ingenieurswesen

11.02.2016 | Veranstaltungen

Deutsche Gesellschaft für Verhaltensmedizin und Verhaltensmodifikation tagt in Mainz

10.02.2016 | Veranstaltungen

Bericht zur weltweiten Lage der Bestäuber

10.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

11.02.2016 | Geowissenschaften

Siliziumchip mit integriertem Laser: Licht aus dem Nanodraht

11.02.2016 | Physik Astronomie

Große Sauerstoffquellen im Erdinneren: Neue Erkenntnisse der Hochdruck- und Hochtemperaturforschung

11.02.2016 | Geowissenschaften