Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Struktur der DNA bildet umschriebenen Raum zur Aktivierung der Genexpression durch freie lncRNAs

08.05.2018

Forscher/innen des Max-Planck-Instituts für molekulare Genetik (MPIMG) in Berlin konnten zeigen, dass eine lncRNA namens A-ROD nur funktionstüchtig ist, wenn sie vom Chromatin in das Kernplasma abgegeben wird. In der aktuellen Ausgabe der Zeitschrift Nature Communications beschreiben die Wissenschaftler/innen, dass sich A-ROD vollständig vom Chromatin ablösen muss, um regulatorisch aktiv werden zu können. Durch die dreidimensionale Struktur der DNA wird gewährleistet, dass sich A-ROD bei der Ablösung bereits in direkter Nähe zu seinem Zielgen befindet. Dies kann unser Verständnis der dynamischen Regulation der Genexpression in biologischen Prozessen stark beeinflussen.

Die Genome von Säugetieren enthalten nicht nur die Informationen für die Proteine des Organismus, sondern auch für Tausende von langen nicht-kodierenden RNAs (lncRNAs). Diese haben regulatorische Funktionen zum Beispiel bei der Entwicklung des Organismus oder der Entstehung von Krankheiten.


Die lange nicht-kodierende RNA A-ROD entfaltet ihre Aktivität innerhalb einer DNA-Schlaufe, wo sie die Bindung von Proteinen an das DKK1-Gen vermittelt.

© E. Ntini / MPI für molekulare Genetik

lncRNAs entstehen mithilfe der gleichen molekularen Maschinerie wie die mRNAs. Um ihre Funktion auszuüben, verbleiben sie aber innerhalb des Zellkerns, wo sie mit Proteinen zusammenwirken und deren Bindung an die DNA vermitteln oder deren enzymatische Aktivität verstärken können. Sie sind häufig im Kern und am Chromatin angereichert, bislang war aber unklar, ob sie sich für ihre Funktion bei der Regulation der Transkription vom Chromatin ablösen müssen.

Jetzt haben die Forschungsgruppen „Lange nicht-kodierende RNAs“ unter der Leitung von Ulf Ørom (jetzt an der Universität Aarhus, Dänemark) und „RNA-Bioinformatik“ unter der Leitung von Annalisa Marsico eine lncRNA namens A-ROD (für Activating Regulator of DKK1) untersucht, die die Expression des DKK1-Gens verstärkt.

Die Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für molekulare Genetik (MPIMG) in Berlin konnten zeigen, dass A-ROD nur in dem Moment funktionsfähig ist, wenn es vom Chromatin in das Kernplasma abgegeben wird. Nur dann kann es Transkriptionsfaktoren - Proteine, die die Aktivität von Genen kontrollieren - an spezifische Stellen der DNA bringen, um so die Genexpression zu verstärken.

„Enhancer kontrollieren die Expression von Genen, die auf dem langgestreckten DNA-Faden weit von ihnen entfernt liegen“, erklärt Evgenia Ntini, Erstautorin der jetzt veröffentlichten Studie. „Interessanterweise stellten wir fest, dass lncRNAs von Enhancern, die mit ihren Zielgenen innerhalb einer gemeinsamen DNA-Schlaufe liegen, seltener an das Chromatin gebunden sind und sich innerhalb des Kernplasmas anreichern. Die Loslösung der lncRNA vom Chromatin scheint für ihre Funktion erforderlich zu sein.“

In der Chromatinform bildet der lineare DNA-Faden eine dreidimensionale Struktur mit festgelegten Schlaufen, wodurch genau definierte DNA-Abschnitte, die auf dem langgestreckten DNA-Faden weit voneinander entfernt liegen, in enge Nachbarschaft zueinander gelangen. Dies ist auch bei dem A-ROD-Enhancer und seinem Zielgen der Fall. „Innerhalb der Schlaufe kann A-ROD sofort mit dem DKK1-Gen und regulatorischen RNA-bindenden Proteinen zusammenwirken, um die Genexpression zu aktivieren“, sagt Ntini.

Auf der Grundlage ihrer Ergebnisse schlagen die Forscherinnen und Forscher eine neue Art der Genregulation vor, die durch lncRNAs vermittelt wird. Sie gehen davon aus, dass die lncRNA ihre Funktion nur ausüben kann, nachdem sie vollständig transkribiert ist und sich von der Transkriptionsstelle gelöst hat.

Dabei muss sich der A-ROD-Enhancer in direkter Nähe zum DKK1-Gen befinden. Damit wäre nicht die Transkription der lncRNA der kritische Schritt für die Genaktivierung, sondern vielmehr ihre Freisetzung vom Chromatin, so dass sie für die Umgebung zugänglich wird, um regulatorische Proteine binden zu können.

Die Ergebnisse sind sowohl aus experimenteller als auch aus therapeutischer Sicht spannend, da die Ansätze zur gezielten Beeinflussung der RNA-Expression im Zytoplasma, im Kernplasma und im Chromatin sehr unterschiedlich sind.

Die Forscherinnen und Forscher glauben, dass diese Unterschiede genutzt werden könnten, um die Ansätze zur gezielten Beeinflussung von RNA-abhängigen Prozessen bei Krankheiten zu optimieren. Als nächstes wollen sie weitere Enhancer-ähnliche ncRNAs identifizieren, um ihr Potential und etwaige Einsatzmöglichkeiten für die Regulation der Genexpression zu untersuchen.

Originalpublikation:
Evgenia Ntini, Annita Louloupi, Julia Liz, Jose Muino, Annalisa Marsico & Ulf Andersson Vang Ørom
Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin.
Nature Communications 9: 1636 (2018)
doi:10.1038/s41467-018-04100-3

Weitere Informationen:

https://www.molgen.mpg.de/2733742/RNA-Bioinformatics - Webseite der Forschungsgruppe

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics