Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Elektronenmikroskopie und Röntgenkristallographie in Mainz: Riesiges Atmungsprotein durchleuchtet

23.06.2010
Strukturanalyse des als Immunstimulator bekannten Hämocyanins „KLH“ macht 68.000 Aminosäuren und einen ungewöhnlichen Baustein sichtbar

Vor der Küste Kaliforniens lebt die Schlüssellochschnecke Megathura crenulata. Ihren Namen hat die Meeresschnecke von einer großen Atemöffnung im Zentrum der Rückenschale, ihre Besonderheit verdankt sie jedoch einem speziellen Atmungsprotein, für das sich Biologen, Mediziner und Pharmazeuten interessieren.

Dieses Sauerstofftransportprotein der Schnecke gehört nämlich zu den größten Proteinen überhaupt. Beim Menschen ruft es starke Immunreaktionen hervor. Deshalb wird es von Immunologen und Klinikern als Immunstimulator eingesetzt, z.B. bei der Immuntherapie von Tumoren. Zwei Abteilungen am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz haben die molekulare Struktur dieses Proteins, das die Bezeichnung „Keyhole Limpet Hämocyanin“ (KLH) trägt, nun vollständig entschlüsselt. Zum Einsatz kamen dabei Sequenzanalyse, 3D-Elektronenmikroskopie und Röntgenkristallographie. Die beiden letztgenannten Methoden können bei Proteinen in Mainz als einzigem Standort in Rheinland-Pfalz durchgeführt werden.

Hämocyanine sind blaue Blutproteine, die bei Schnecken, Tintenfischen, Spinnen und Krebsen den Transport von Sauerstoff im Körper bewältigen. Bei diesen blauen Blutfarbstoffen bindet Kupfer den Sauerstoff anstelle von Eisen wie beim Hämoglobin in unseren roten Blutkörperchen. Im Elektronenmikroskop erscheint das KLH-Molekül als Hohlzylinder mit einem Kragen an beiden Enden. Es hat einen Durchmesser von 35 Millionstel Millimeter. Das ist zwar unglaublich winzig, für ein Protein aber ganz außergewöhnlich groß. „Wir hatten am Institut für Zoologie die komplette Aminosäuresequenz des KLH ermittelt und herausgefunden, dass es aus 8 verschiedenen Proteinbausteinen besteht, die sich in dem Riesenmolekül 20 Mal wiederholen. Nun interessierte uns seine genaue dreidimensionale Struktur“, erläutert Prof. Jürgen Markl. Erst an der räumlichen Struktur lässt sich erkennen, wie die einzelnen Bausteine des Riesenproteins zueinander stehen, wie der Mechanismus zur Aufnahme und Abgabe von Sauerstoff genau funktioniert und wie seine immunologischen Eigenschaften zustande kommen. Von den acht Bausteinen des KLH sind sich sieben recht ähnlich. Sie bestehen jeweils aus etwa 420 Aminosäuren und ihre molekulare Struktur war bereits gut bekannt. Mit einer innovativen Methode, der 3D-Elektronenmikroskopie, erstellte die Arbeitsgruppe um Prof. Markl aus Tausenden elektronenmikroskopischer Bilder ein Computermodell des KLH. Dieses war detailliert genug, um wie in einem dreidimensionalen Puzzle die sieben bekannten Bausteine des KLH einpassen zu können – jeden Baustein 20 Mal. Damit war das gesamte KLH-Molekül aufgeklärt, außer dem Kragen, der den Zylinder auf beiden Seiten abschließt. Jeder Kragen wird aus zehn Kopien des achten Bausteins gebildet.

Der achte Baustein besitzt 100 Aminosäuren mehr, also insgesamt 520, und war in seiner Struktur noch ein völliges Rätsel, das die Arbeitsgruppe um Prof. Markl alleine nicht lösen konnte. Hier half Prof. Elmar Jaenicke vom Institut für Molekulare Biophysik, ein Spezialist für Röntgenstrukturanalyse. „Nur die Röntgenstrukturanalyse konnte in diesem Fall eine atomare Auflösung liefern“, erläutert Jaenicke. Diese Technik in Kombination mit der 3D-Elektronenmikroskopie hatte auch zur Aufklärung der Ribosomen-Struktur geführt, wofür ihre Entdecker 2009 den Chemie-Nobelpreis erhielten.

Ein Protein ist nicht ohne weiteres unter der Röntgenapparatur zu sehen, sondern muss zuerst in sehr langwieriger Laborarbeit zu einem Kristall gezogen werden – eine feste Gitterstruktur, die ein Proteinmolekül natürlicherweise nie einnehmen würde. „Ein so großes Protein wie das gesamte KLH in einen Kristall einzubauen, ist nahezu unmöglich. Auch bei den viel kleineren Bausteinen des KLH ist es so, als ob man einen Ozeantanker in eine Parklücke hineinmanövrieren wollte; es dauert wochenlang“, beschreibt Jaenicke den Prozess, bei dem die Proteine in einer Salzlösung ganz allmählich ausgefällt werden. „Die richtigen Bedingungen beim Kragenbaustein herauszufinden, hat Monate gebraucht.“ Zuvor musste der Kragenbaustein in großen Mengen von den anderen sieben Bausteinen abgetrennt werden. Das war biochemische Schwerarbeit.

Nach der erfolgreichen Kristallisation wurde die räumliche Struktur des KLH-Kragenbausteins mit Röntgenstrahlen aufgeklärt. Zum Vorschein kam ein Gebilde, das in seinem Vorderteil den übrigen sieben Bausteinen gleicht, aber am Hinterende ein weiteres Teil besitzt; in diesem stecken die zusätzlichen 100 Aminosäuren. „Die Struktur dieses Zusatzteils stimmt auf erstaunliche Weise mit Proteinen aus der Cupredoxin-Familie überein. Allerdings fehlt deren übliches Kupferatom im Zentrum“, erläutert Jaenicke. Eine Recherche in den Protein-Datenbanken ergab, dass auch im Hämocyanin von Gliederfüßern wie Krebsen und Spinnen ein Bereich Cupredoxin-ähnlich ist, was bisher übersehen worden war.

„Die Hämocyanine von Gliederfüßern und Weichtieren sind ganz unterschiedlich aufgebaut, sodass sie aus zwei getrennten Wurzeln stammen dürften.“ Jaenicke geht nun davon aus, dass die Evolution beider Hämocyanin-Familien dennoch ähnlich verlief. „In beiden Fällen waren die Cupredoxin-ähnlichen Domänen ursprünglich wahrscheinlich wichtig für den Erhalt des Kupferzentrums. Vielleicht haben sie früher dazu beigetragen, die Kupferionen in das Hämocyanin einzubauen und so die Sauerstoffversorgung zu verbessern.“ Heute allerdings haben die Cupredoxin-ähnlichen Domänen offensichtlich vor allem die Aufgabe, die Struktur der riesigen Hämocyanin-Moleküle zu stabilisieren. Nach Einpassen des Kragenbausteins in das KLH-Modell wurde nämlich deutlich, dass der Kragen nur über den Cupredoxin-ähnlichen Zusatz zusammenhält.

Die Kombination aus Sequenzanalyse, 3D-Elektronenmikroskopie und Röntgenstrukturanalyse und die enge Zusammenarbeit der beiden komplementär aufgestellten strukturbiologischen Abteilungen (Lieb/Markl und Jaenicke/Decker) hat es den Mainzer Forschern ermöglicht, das riesige, aus rund einer Million Atomen bzw. 68.000 Aminosäuren bestehende KLH bis in die molekularen Details aufzuklären. Das nächste gemeinsame Ziel ist nun, auf der Basis dieses Strukturmodells den Informationsaustausch zwischen den verschiedenen Bausteinen bei der kooperativen Sauerstoffbindung genau zu beschreiben. Bis heute ist zum Beispiel unklar, woher die verschiedenen aktiven Zentren „erfahren“, dass an einer Stelle ihres Moleküls Sauerstoff gebunden wurde. Nur: alle reagieren darauf und binden nun ihrerseits die Sauerstoffmoleküle besser.

An der Strukturaufklärung des KLH waren auch beteiligt: PD Dr. Bernhard Lieb, Dr. Wolfgang Gebauer, Dr. Christos Gatsogiannis, Dr. Frank Depoix, Dr. Kai Büchler (Institut für Zoologie); Prof. Dr. Heinz Decker (Institut für Molekulare Biophysik); Dr. Thomas Barends (Max-Plank-Institut für Medizinische Forschung, Heidelberg). Förderungen erfolgten durch das DFG-Graduiertenkolleg GK1043 „Immunotherapie“ sowie durch das Forschungszentrum Immunologie (FZI) der Johannes Gutenberg-Universität.

Veröffentlichungen:

Gatsogiannis C & Markl J (2009) “Keyhole limpet hemocyanin (KLH). 9-Å cryoEM structure and molecular model of the didecamer reveal the interfaces and intricate topology of the 160 functional units. J. Mol. Biol. 385, 963-983

Jaenicke E, Büchler K, Markl J, Decker H & Barends T (2010). The Cupredoxin-like domains in haemocyanins. Biochem. J. 426, 373-378

Weitere Informationen:

Prof. Dr. Elmar Jaenicke
Institut für Molekulare Biophysik
Johannes Gutenberg-Universität Mainz
55128 Mainz
Tel. +49 6131 39-23567
E-Mail: elmar.jaenicke@uni-mainz.de
Prof. Dr. Jürgen Markl
Institut für Zoologie
Johannes Gutenberg-Universität Mainz
55128 Mainz
Tel. +49 6131 39-22314
E-Mail: markl@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics