Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Elektronenmikroskopie und Röntgenkristallographie in Mainz: Riesiges Atmungsprotein durchleuchtet

23.06.2010
Strukturanalyse des als Immunstimulator bekannten Hämocyanins „KLH“ macht 68.000 Aminosäuren und einen ungewöhnlichen Baustein sichtbar

Vor der Küste Kaliforniens lebt die Schlüssellochschnecke Megathura crenulata. Ihren Namen hat die Meeresschnecke von einer großen Atemöffnung im Zentrum der Rückenschale, ihre Besonderheit verdankt sie jedoch einem speziellen Atmungsprotein, für das sich Biologen, Mediziner und Pharmazeuten interessieren.

Dieses Sauerstofftransportprotein der Schnecke gehört nämlich zu den größten Proteinen überhaupt. Beim Menschen ruft es starke Immunreaktionen hervor. Deshalb wird es von Immunologen und Klinikern als Immunstimulator eingesetzt, z.B. bei der Immuntherapie von Tumoren. Zwei Abteilungen am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz haben die molekulare Struktur dieses Proteins, das die Bezeichnung „Keyhole Limpet Hämocyanin“ (KLH) trägt, nun vollständig entschlüsselt. Zum Einsatz kamen dabei Sequenzanalyse, 3D-Elektronenmikroskopie und Röntgenkristallographie. Die beiden letztgenannten Methoden können bei Proteinen in Mainz als einzigem Standort in Rheinland-Pfalz durchgeführt werden.

Hämocyanine sind blaue Blutproteine, die bei Schnecken, Tintenfischen, Spinnen und Krebsen den Transport von Sauerstoff im Körper bewältigen. Bei diesen blauen Blutfarbstoffen bindet Kupfer den Sauerstoff anstelle von Eisen wie beim Hämoglobin in unseren roten Blutkörperchen. Im Elektronenmikroskop erscheint das KLH-Molekül als Hohlzylinder mit einem Kragen an beiden Enden. Es hat einen Durchmesser von 35 Millionstel Millimeter. Das ist zwar unglaublich winzig, für ein Protein aber ganz außergewöhnlich groß. „Wir hatten am Institut für Zoologie die komplette Aminosäuresequenz des KLH ermittelt und herausgefunden, dass es aus 8 verschiedenen Proteinbausteinen besteht, die sich in dem Riesenmolekül 20 Mal wiederholen. Nun interessierte uns seine genaue dreidimensionale Struktur“, erläutert Prof. Jürgen Markl. Erst an der räumlichen Struktur lässt sich erkennen, wie die einzelnen Bausteine des Riesenproteins zueinander stehen, wie der Mechanismus zur Aufnahme und Abgabe von Sauerstoff genau funktioniert und wie seine immunologischen Eigenschaften zustande kommen. Von den acht Bausteinen des KLH sind sich sieben recht ähnlich. Sie bestehen jeweils aus etwa 420 Aminosäuren und ihre molekulare Struktur war bereits gut bekannt. Mit einer innovativen Methode, der 3D-Elektronenmikroskopie, erstellte die Arbeitsgruppe um Prof. Markl aus Tausenden elektronenmikroskopischer Bilder ein Computermodell des KLH. Dieses war detailliert genug, um wie in einem dreidimensionalen Puzzle die sieben bekannten Bausteine des KLH einpassen zu können – jeden Baustein 20 Mal. Damit war das gesamte KLH-Molekül aufgeklärt, außer dem Kragen, der den Zylinder auf beiden Seiten abschließt. Jeder Kragen wird aus zehn Kopien des achten Bausteins gebildet.

Der achte Baustein besitzt 100 Aminosäuren mehr, also insgesamt 520, und war in seiner Struktur noch ein völliges Rätsel, das die Arbeitsgruppe um Prof. Markl alleine nicht lösen konnte. Hier half Prof. Elmar Jaenicke vom Institut für Molekulare Biophysik, ein Spezialist für Röntgenstrukturanalyse. „Nur die Röntgenstrukturanalyse konnte in diesem Fall eine atomare Auflösung liefern“, erläutert Jaenicke. Diese Technik in Kombination mit der 3D-Elektronenmikroskopie hatte auch zur Aufklärung der Ribosomen-Struktur geführt, wofür ihre Entdecker 2009 den Chemie-Nobelpreis erhielten.

Ein Protein ist nicht ohne weiteres unter der Röntgenapparatur zu sehen, sondern muss zuerst in sehr langwieriger Laborarbeit zu einem Kristall gezogen werden – eine feste Gitterstruktur, die ein Proteinmolekül natürlicherweise nie einnehmen würde. „Ein so großes Protein wie das gesamte KLH in einen Kristall einzubauen, ist nahezu unmöglich. Auch bei den viel kleineren Bausteinen des KLH ist es so, als ob man einen Ozeantanker in eine Parklücke hineinmanövrieren wollte; es dauert wochenlang“, beschreibt Jaenicke den Prozess, bei dem die Proteine in einer Salzlösung ganz allmählich ausgefällt werden. „Die richtigen Bedingungen beim Kragenbaustein herauszufinden, hat Monate gebraucht.“ Zuvor musste der Kragenbaustein in großen Mengen von den anderen sieben Bausteinen abgetrennt werden. Das war biochemische Schwerarbeit.

Nach der erfolgreichen Kristallisation wurde die räumliche Struktur des KLH-Kragenbausteins mit Röntgenstrahlen aufgeklärt. Zum Vorschein kam ein Gebilde, das in seinem Vorderteil den übrigen sieben Bausteinen gleicht, aber am Hinterende ein weiteres Teil besitzt; in diesem stecken die zusätzlichen 100 Aminosäuren. „Die Struktur dieses Zusatzteils stimmt auf erstaunliche Weise mit Proteinen aus der Cupredoxin-Familie überein. Allerdings fehlt deren übliches Kupferatom im Zentrum“, erläutert Jaenicke. Eine Recherche in den Protein-Datenbanken ergab, dass auch im Hämocyanin von Gliederfüßern wie Krebsen und Spinnen ein Bereich Cupredoxin-ähnlich ist, was bisher übersehen worden war.

„Die Hämocyanine von Gliederfüßern und Weichtieren sind ganz unterschiedlich aufgebaut, sodass sie aus zwei getrennten Wurzeln stammen dürften.“ Jaenicke geht nun davon aus, dass die Evolution beider Hämocyanin-Familien dennoch ähnlich verlief. „In beiden Fällen waren die Cupredoxin-ähnlichen Domänen ursprünglich wahrscheinlich wichtig für den Erhalt des Kupferzentrums. Vielleicht haben sie früher dazu beigetragen, die Kupferionen in das Hämocyanin einzubauen und so die Sauerstoffversorgung zu verbessern.“ Heute allerdings haben die Cupredoxin-ähnlichen Domänen offensichtlich vor allem die Aufgabe, die Struktur der riesigen Hämocyanin-Moleküle zu stabilisieren. Nach Einpassen des Kragenbausteins in das KLH-Modell wurde nämlich deutlich, dass der Kragen nur über den Cupredoxin-ähnlichen Zusatz zusammenhält.

Die Kombination aus Sequenzanalyse, 3D-Elektronenmikroskopie und Röntgenstrukturanalyse und die enge Zusammenarbeit der beiden komplementär aufgestellten strukturbiologischen Abteilungen (Lieb/Markl und Jaenicke/Decker) hat es den Mainzer Forschern ermöglicht, das riesige, aus rund einer Million Atomen bzw. 68.000 Aminosäuren bestehende KLH bis in die molekularen Details aufzuklären. Das nächste gemeinsame Ziel ist nun, auf der Basis dieses Strukturmodells den Informationsaustausch zwischen den verschiedenen Bausteinen bei der kooperativen Sauerstoffbindung genau zu beschreiben. Bis heute ist zum Beispiel unklar, woher die verschiedenen aktiven Zentren „erfahren“, dass an einer Stelle ihres Moleküls Sauerstoff gebunden wurde. Nur: alle reagieren darauf und binden nun ihrerseits die Sauerstoffmoleküle besser.

An der Strukturaufklärung des KLH waren auch beteiligt: PD Dr. Bernhard Lieb, Dr. Wolfgang Gebauer, Dr. Christos Gatsogiannis, Dr. Frank Depoix, Dr. Kai Büchler (Institut für Zoologie); Prof. Dr. Heinz Decker (Institut für Molekulare Biophysik); Dr. Thomas Barends (Max-Plank-Institut für Medizinische Forschung, Heidelberg). Förderungen erfolgten durch das DFG-Graduiertenkolleg GK1043 „Immunotherapie“ sowie durch das Forschungszentrum Immunologie (FZI) der Johannes Gutenberg-Universität.

Veröffentlichungen:

Gatsogiannis C & Markl J (2009) “Keyhole limpet hemocyanin (KLH). 9-Å cryoEM structure and molecular model of the didecamer reveal the interfaces and intricate topology of the 160 functional units. J. Mol. Biol. 385, 963-983

Jaenicke E, Büchler K, Markl J, Decker H & Barends T (2010). The Cupredoxin-like domains in haemocyanins. Biochem. J. 426, 373-378

Weitere Informationen:

Prof. Dr. Elmar Jaenicke
Institut für Molekulare Biophysik
Johannes Gutenberg-Universität Mainz
55128 Mainz
Tel. +49 6131 39-23567
E-Mail: elmar.jaenicke@uni-mainz.de
Prof. Dr. Jürgen Markl
Institut für Zoologie
Johannes Gutenberg-Universität Mainz
55128 Mainz
Tel. +49 6131 39-22314
E-Mail: markl@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Maßstäbe für eine bessere Wasserqualität in Europa
27.02.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Neurobiologie - Vorausschauend teilen
27.02.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik