Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Blick ins Gehirn

12.01.2010
Räumliche Verteilung von Biomolekülen in Substrukturen des Maushirns per Massenspektrometrie

Ein ganz neuer Blick ins Gehirn von Mäusen hat sich einem Team um R. Graham Cooks von der Purdue University (West Lafayette, USA) eröffnet. Mit massenspektroskopischen Methoden und bildgebenden Verfahren ist es ihnen gelungen, dreidimensionale Bilder zu erzeugen, die die räumliche Verteilung bestimmter Biomoleküle in Unterstrukturen des Maushirns widerspiegeln, wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten.

Die Massenspektroskopie (MS) ist eine Methode, bei der Moleküle anhand ihrer Masse getrennt und identifiziert werden können. Die Kombination mit bildgebenden Verfahren macht es möglich, die zweidimensionale Verteilung von Molekülen, wie Wirkstoffen, Proteinen und Lipiden, auf der Oberfläche einer biologischen Probe hochspezifisch darzustellen. Gewebeschnitte werden dazu einfach gemäß vereinfachten histologischen Standardverfahren vorbereitet. Für die MS-Analyse müssen dann Moleküle von der Oberfläche abgetragen, ionisiert und in die Gasphase überführt werden. Die Forscher setzten dazu die so genannte Desorptions-Elektrospray-Ionisation (DESI) ein, eine Ionisationsmethode, die Cooks Team vor einigen Jahren entwickelt hatte. Cooks: "Besonderer Vorteil ist, dass die Proben an der Luft untersucht werden können, während die etablierten bildgebenden MS-Verfahren eine spezielle Oberflächenbehandlung und eine Ionisation unter Vakuum voraussetzen."

Die Forscher präparierten Serien von Dünnschnitten aus Mäusehirn und analysierten deren Lipid-Zusammensetzung. Zwei verschiedene massenspektroskopische Muster wurden beobachtet. Sie lassen sich der grauen und der weißen Masse des Gehirns zuordnen, die sich in ihrer Lipid-Zusammensetzung unterscheiden.

Aus einem Satz der 2D-Daten konstruierten die Forscher 3D-Bilder, die jeweils einen Lipid-Hauptbestandteil räumlich kartieren. Durch Übereinanderlegen dieser 3D-Datensätze erzeugten sie ein Modell des Mäusehirns, in dem sich anatomische Einzelheiten erkennen lassen. Weitere Biomoleküle können nun aufgezeichnet und deren 3D-Bilder ebenfalls über das Modell gelegt werden. So lässt sich ermitteln, in welchen Hirnarealen die entsprechenden Substanzen bevorzugt vorkommen. "Wir erhoffen uns davon ein besseres Verständnis über die biochemischen Vorgänge im Hirn," so Cooks. "Außer dem Gehirn wollen wir nun auch andere Organe auf diese Weise kartieren."

Angewandte Chemie: Presseinfo 01/2010

Autor: R. Graham Cooks, Purdue University, West Lafayette (USA), http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1

Angewandte Chemie, Permalink: http://dx.doi.org/10.1002/ange.200906283

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1
http://dx.doi.org/10.1002/ange.200906283

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen