Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Blick ins Gehirn

12.01.2010
Räumliche Verteilung von Biomolekülen in Substrukturen des Maushirns per Massenspektrometrie

Ein ganz neuer Blick ins Gehirn von Mäusen hat sich einem Team um R. Graham Cooks von der Purdue University (West Lafayette, USA) eröffnet. Mit massenspektroskopischen Methoden und bildgebenden Verfahren ist es ihnen gelungen, dreidimensionale Bilder zu erzeugen, die die räumliche Verteilung bestimmter Biomoleküle in Unterstrukturen des Maushirns widerspiegeln, wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten.

Die Massenspektroskopie (MS) ist eine Methode, bei der Moleküle anhand ihrer Masse getrennt und identifiziert werden können. Die Kombination mit bildgebenden Verfahren macht es möglich, die zweidimensionale Verteilung von Molekülen, wie Wirkstoffen, Proteinen und Lipiden, auf der Oberfläche einer biologischen Probe hochspezifisch darzustellen. Gewebeschnitte werden dazu einfach gemäß vereinfachten histologischen Standardverfahren vorbereitet. Für die MS-Analyse müssen dann Moleküle von der Oberfläche abgetragen, ionisiert und in die Gasphase überführt werden. Die Forscher setzten dazu die so genannte Desorptions-Elektrospray-Ionisation (DESI) ein, eine Ionisationsmethode, die Cooks Team vor einigen Jahren entwickelt hatte. Cooks: "Besonderer Vorteil ist, dass die Proben an der Luft untersucht werden können, während die etablierten bildgebenden MS-Verfahren eine spezielle Oberflächenbehandlung und eine Ionisation unter Vakuum voraussetzen."

Die Forscher präparierten Serien von Dünnschnitten aus Mäusehirn und analysierten deren Lipid-Zusammensetzung. Zwei verschiedene massenspektroskopische Muster wurden beobachtet. Sie lassen sich der grauen und der weißen Masse des Gehirns zuordnen, die sich in ihrer Lipid-Zusammensetzung unterscheiden.

Aus einem Satz der 2D-Daten konstruierten die Forscher 3D-Bilder, die jeweils einen Lipid-Hauptbestandteil räumlich kartieren. Durch Übereinanderlegen dieser 3D-Datensätze erzeugten sie ein Modell des Mäusehirns, in dem sich anatomische Einzelheiten erkennen lassen. Weitere Biomoleküle können nun aufgezeichnet und deren 3D-Bilder ebenfalls über das Modell gelegt werden. So lässt sich ermitteln, in welchen Hirnarealen die entsprechenden Substanzen bevorzugt vorkommen. "Wir erhoffen uns davon ein besseres Verständnis über die biochemischen Vorgänge im Hirn," so Cooks. "Außer dem Gehirn wollen wir nun auch andere Organe auf diese Weise kartieren."

Angewandte Chemie: Presseinfo 01/2010

Autor: R. Graham Cooks, Purdue University, West Lafayette (USA), http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1

Angewandte Chemie, Permalink: http://dx.doi.org/10.1002/ange.200906283

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1
http://dx.doi.org/10.1002/ange.200906283

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten