Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Nanostruktur eines Knochens sichtbar gemacht

19.11.2015

Knochen bestehen aus winzigen Fasern, die etwa tausend Mal feiner sind als ein menschliches Haar. Mit einer neuartigen computerbasierten Auswertungsmethode konnten Forschende des Paul Scherrer Instituts PSI zum ersten Mal die Ordnung und Ausrichtung dieser Nanostrukturen innerhalb eines gesamten Knochenstücks sichtbar machen.

Die Anordnung der Nanostruktur eines dreidimensionalen Objektes lässt sich dank einer neuen Methode von Forschenden am Paul Scherrer Institut PSI sichtbar machen. An einem rund zweieinhalb Millimeter langen Stück eines menschlichen Rückenwirbels haben die Forschenden dies in Zusammenarbeit mit Knochen-Biomechanikern der ETH Zürich und der Universität Southampton, England, demonstriert.


Der Knochen und seine Nanostruktur: Dank ihrer neu entwickelten Auswertungsmethode konnten Forschende am PSI die Ausrichtung der winzigen Kollagenfibrillen kartieren.

Grafik: Paul Scherrer Institut/Marianne Liebi

Knochen bestehen aus winzigen Fasern, sogenannten Kollagenfibrillen. Deren dreidimensionale lokale Ausrichtung wurde nun entlang des kompletten Knochenstücks sichtbar gemacht. Diese Eigenschaften bestimmen massgeblich die Stabilität eines Knochens.

Somit könnte die Abbildungstechnik unter anderem der Erforschung der Osteoporose zugutekommen. Allgemein eignet sie sich nicht nur zur Untersuchung biologischer Objekte, sondern auch zur Entwicklung zukunftsträchtiger Materialien.

Die Daten wurden an der Synchrotron Lichtquelle Schweiz SLS des PSI gewonnen, wo das Knochenstück mit einem extrem feinen und intensiven Röntgenstrahl durchleuchtet wurde. Dieser Strahl rastert über die Probe und vermisst sie so Punkt für Punkt. Dadurch kann an jedem Messpunkt die lokale Nanostruktur bestimmt werden.

Der entscheidende Schritt von 2-D zu 3-D

Bisher liessen sich nur zweidimensionale Proben auf diese Art abrastern und untersuchen. Klassischerweise werden die Untersuchungsobjekte daher in sehr dünne Scheiben geschnitten. "Allerdings lässt sich nicht jedes Objekt beliebig dünn schneiden", erklärt Projektbetreuer Manuel Guizar-Sicairos.

"Und manchmal zerstört oder verändert man dabei gerade die Nanostruktur, die man untersuchen wollte." Auch ist ganz grundsätzlich eine zerstörungsfreie Methode vorzuziehen, bei der also das Untersuchungsobjekt nach der Messung noch zur Verfügung steht.

Um nun auch dreidimensionale Objekte abbilden zu können, rasterten die PSI-Forschenden ihre Probe immer wieder, drehten sie jedoch zwischen zwei Aufnahmen jeweils um einen kleinen Winkel. So erhielten sie Messdaten aus allen Raumrichtungen, die ihnen erlaubten, das dreidimensionale Objekt inklusive seiner Nanostruktur nachträglich im Computer zu rekonstruieren.

Damit knüpft die neue Messmethode der PSI-Forschenden an ein Prinzip aus der Computertomographie (CT) an. Auch dort werden zunächst viele Röntgenaufnahmen eines Patienten oder Objekts aus verschiedenen Richtungen angefertigt und anschliessend per Computerauswertung zu den gewünschten Bildern zusammengesetzt. Allerdings nutzt die herkömmliche Computertomographie keinen feinen Röntgenstrahl, sondern das Objekt wird flächig beleuchtet.

Dadurch lässt sich per Computertomographie zwar die variierende Dichte des Materials abbilden, nicht jedoch die Ausrichtung der zugrunde liegenden Nanostruktur. Letzteres wird erst möglich durch den schmalen, intensiven Röntgenstrahl der SLS sowie durch hochmoderne Detektoren.

Bilder entstehen dank mathematischer Algorithmen

Der komplexeste Schritt war jedoch, aus der immensen Zahl der Daten per Computer ein Bild der dreidimensionalen Probe zusammenzusetzen. Hierfür entwickelten die Forschenden einen eigenen aufwendigen mathematischen Algorithmus. "Der Röntgenstrahl durchquert immer die Probe in ihrer ganzen Tiefe und wir sehen nur das Endergebnis", erklärt Marianne Liebi, Erstautorin der Studie. "Wie die dreidimensionale Struktur aussieht, das müssen wir nachträglich herausfinden."

Liebis Algorithmus sucht für jeden Punkt im Inneren der Probe die Struktur, die am besten den gemessenen Daten entspricht. Dabei nutzten die Forschenden den Umstand aus, dass sie von einer gewissen Symmetrie bei der Anordnung der Kollagenfibrillen im Knochen ausgehen konnten und reduzierten dadurch ihre Daten auf ein berechenbares Mass. Dennoch blieben 2,2 Millionen Parameter. Diese wurden per Computerprogramm optimiert, bis die Forschenden das Bild der Probe erhielten, das die Messung am besten erklärte.

"Ich war überrascht, dass nach so viel purer Mathematik ein Bild entstand, das wirklich wie ein Knochen aussah," so Liebi. "Die Details darin sahen direkt einleuchtend aus."

Wie eine Landkarte der Vegetationszonen

Während die klassische Computertomographie Graustufen-Bilder erzeugt, entstehen mit der neuen Methode quasi bunte Abbildungen mit deutlich mehr Information: Die farbigen Linien zeigen die Orientierung auf der Nanoskala an und geben sogar Auskunft über das Ausmass der Orientierung – ob also die Kollagenfibrillen an einem bestimmten Punkt grösstenteils, teilweise oder gar nicht parallel zueinander liegen.

"Wir können zwar nicht jede einzelne Kollagenfibrille direkt abbilden, aber wir brauchen das auch gar nicht", erklärt Guizar-Sicairos. "Unsere Bildgebung gleicht eher einer Landkarte der Vegetationszonen. Auch dafür wird jeweils über ein gewisses Areal gemittelt und gesagt: Hier gibt es vor allem Nadelbäume, dort Laubbäume und dort Mischwälder." So lässt sich die Vegetation ganzer Kontinente kartieren, ohne jede einzelne Baumart bestimmen zu müssen.

Analog lässt sich sagen, dass bei herkömmlichen mikro- und nanoskopischen Methoden diese Abbildung einzelner Bäume noch nötig war. Darum galt: Je kleiner die Struktur eines Objekts, desto kleiner musste auch der Bildausschnitt sein. Durch ihre neue Methode ist es den PSI-Forschenden gelungen, diese Regel zu umgehen: Von dem mit blossem Auge sichtbaren Knochenstück haben sie die Anordnung der Nanostruktur in einem einzigen Bild festgehalten.

Zeitgleich mit ihrer Veröffentlichung erscheint ebenfalls im Fachblatt Nature eine Publikation unter Federführung eines anderen Forscherteams, bei der Liebi und Guizar-Sicairos Mitautoren sind. Hierin wird eine alternative Auswertungsmethode vorgestellt, die zu einem ähnlichen Forschungsergebnis führt: Den Forschenden gelang es, die dreidimensionale innere Nanostruktur eines menschlichen Zahns zu bestimmen.

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.

Kontakt / Ansprechpartner

Dr. Marianne Liebi, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 54 53, E-Mail: marianne.liebi@psi.ch [Deutsch, Englisch]

Dr. Manuel Guizar-Sicairos, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 34 09, E-Mail: manuel.guizar-sicairos@psi.ch [Englisch, Spanisch]

Originalveröffentlichungen

Nanostructure surveys on macroscopic specimens by small-angle scattering tensor tomography
M. Liebi, M. Georgiadis, A. Menzel, P. Schneider, J. Kohlbrecher, O. Bunk and M. Guizar-Sicairos,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16056

Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
F. Schaff, M. Bech, P. Zaslansky, C. Jud, M. Liebi, M. Guizar-Sicairos and F. Pfeiffer,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16060

Weitere Informationen:

http://psi.ch/KA1k Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen
http://www.psi.ch/coherent-x-ray-scattering Forschungsgruppe für Kohärente Röntgenstreuung (Englisch)

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Rezept für ein motorisches Neuron
09.12.2016 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht "Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53
09.12.2016 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops