Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


After 100 Years, Understanding the Electrical Role of Dendritic Spines

It’s the least understood organ in the human body: the brain, a massive network of electrically excitable neurons, all communicating with one another via receptors on their tree-like dendrites. Somehow these cells work together to enable great feats of human learning and memory. But how?
Researchers know dendritic spines play a vital role. These tiny membranous structures protrude from dendrites’ branches; spread across the entire dendritic tree, the spines on one neuron collect signals from an average of 1,000 others. But more than a century after they were discovered, their function still remains only partially understood.

A Northwestern University researcher, working in collaboration with scientists at the Howard Hughes Medical Institute (HHMI) Janelia Farm Research Campus, has recently added an important piece of the puzzle of how neurons “talk” to one another. The researchers have demonstrated that spines serve as electrical compartments in the neuron, isolating and amplifying electrical signals received at the synapses, the sites at which neurons connect to one another.

The key to this discovery is the result of innovative experiments at the Janelia Farm Research Campus and computer simulations performed at Northwestern University that can measure electrical responses on spines throughout the dendrites.

A paper about the findings, “Synaptic Amplification by Dendritic Spines Enhances Input Cooperatively,” was published November 22 in the journal Nature.

“This research conclusively shows that dendritic spines respond to and process synaptic inputs not just chemically, but also electrically,” said William Kath, professor of engineering sciences and applied mathematics at Northwestern’s McCormick School of Engineering, professor of neurobiology at the Weinberg College of Arts and Sciences, and one of the paper’s authors.

Dendritic spines come in a variety of shapes, but typically consist of a bulbous spine head at the end of a thin tube, or neck. Each spine head contains one or more synapses and is located in very close proximity to an axon coming from another neuron.

Scientists have gained insight into the chemical properties of dendritic spines: receptors on their surface are known to respond to a number of neurotransmitters, such as glutamate and glycine, released by other neurons. But because of the spines’ incredibly small size — roughly 1/100 the diameter of a human hair — their electrical properties have been harder to study

In this study, researchers at the HHMI Janelia Farm Research Campus used three experimental techniques to assess the electrical properties of dendritic spines in rats’ hippocampi, a part of the brain that plays an important role in memory and spatial navigation. First, the researchers used two miniature electrodes to administer current and measure its voltage response at different sites throughout the dendrites.

They also used a technique called “glutamate uncaging,” a process that involves releasing glutamate, an excitatory neurotransmitter, to evoke electrical responses from specific synapses, as if the synapse had just received a signal from a neighboring neuron. A third process utilized a calcium-sensitive dye — calcium is a chemical indicator of a synaptic event — injected into the neuron to provide an optical representation of voltage changes within the spine.

At Northwestern, researchers used computational models of real neurons — reconstructed from the same type of rat neurons — to build a 3D representation of the neuron with accurate information about each dendrites’ placement, diameter, and electrical properties. The computer simulations, in concert with the experiments, indicated that spines’ electrical resistance is consistent throughout the dendrites, regardless of where on the dendritic tree they are located.

While much research is still needed to gain a full understanding of the brain, knowledge about spines’ electrical processing could lead to advances in the treatment of diseases like Alzheimer’s and Huntington’s diseases.

“The brain is much more complicated than any computer we’ve ever built, and understanding how it works could lead to advances not just in medicine, but in areas we haven’t considered yet,” Kath said. “We could learn how to process information in ways we can only guess at now.”

Other authors of the paper, all of HHMI Janelia Farm Research Campus, include lead author Mark T. Harnett, Judit K. Makara, Nelson Spruston (formerly of Northwestern University), and Jeffrey C. Magee, the senior author on the paper.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: „OLED Licht Forum" – zentraler Ansprechpartner für die Lichtquelle OLED

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, Forschungs- und Entwicklungsanbieter für OLED-Beleuchtungslösungen, ist seit 19. März 2018 Teil des neu gegründeten „OLED Licht Forums“ und präsentiert auf der light+building vom 18. – 23. März 2018, in Frankfurt a.M., in Halle 4.0 am Stand Nr. F91, neue OLED-Design- und Beleuchtungslösungen.

Sie vereint die große Leidenschaft für die OLED-Beleuchtung (organische Leuchtdioden) mit all ihren Facetten und Anwendungsmöglichkeiten. Daher haben sich...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Winzige Zell-Implantate funktionieren auch in vivo

Einem interdisziplinären Team der Universität Basel ist es erstmals gelungen, steuerbare künstliche Organellen erfolgreich in die Zellen lebender Zebrafischembryonen einzuschleusen. Der innovative Ansatz, künstliche Organellen als Zell-Implantate zu nutzen, verspricht neue Perspektiven bei der Behandlung verschiedener Krankheiten, wie die Autoren in ihrer Veröffentlichung in «Nature Communications» berichten.

In den Zellen höherer Lebewesen erfüllen Organellen wie der Zellkern oder die Mitochondrien verschiedene lebensnotwendige Funktionen. Im Verbund mit dem Swiss...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Hybrid-elektrisch angetriebene Verkehrsflugzeuge – Zukunft oder Fiktion?

20.03.2018 | Veranstaltungen

Konferenz zur virtuellen Realität kommt nach Reutlingen

19.03.2018 | Veranstaltungen

Veranstaltungen zur Digitalisierung in der Weiterbildung

19.03.2018 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Wie Lebendimpfungen die Immunantwort stärken

21.03.2018 | Biowissenschaften Chemie

Rasanter Meeresspiegelanstieg verzögerte Übergang zum Ackerbau in Südosteuropa

21.03.2018 | Geowissenschaften

Weniger Insektizide durch natürliche Räuber

21.03.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics