Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

'Premium-Vektoren' für die Life Sciences: Magnetische Nanopartikel

05.03.2012
Positiv geladene Sternpolymere mit einem magnetischen Kern eignen sich hervorragend als DNA-Vektoren und haben so vielfältige Anwendungen in den Lebenswissenschaften.
Sie zeichnen sich zunächst durch eine außerordentlich hohe Gentransfer-Effizienz aus und ermöglichen anschließend eine schnelle und einfache Auslese der transfizierten Zellen. Darüber berichtet ein Forschungsteam der Universität Bayreuth in der Online-Ausgabe der Zeitschrift "Biomacromolecules".

Es ist erst fünf Monate her, seit ein Bayreuther Forschungsteam um Prof. Dr. Ruth Freitag (Bioprozesstechnik) und Prof. Dr. Axel Müller (Makromolekulare Chemie II) mit einer Entdeckung an die Öffentlichkeit trat, die weithin internationale Beachtung fand. Die Wissenschaftler haben große sternförmige Polymere entwickelt, die neue Möglichkeiten in der Gentechnik eröffnen. Chemisch gesprochen, handelt es sich bei diesen Molekülen um PDMAEMA-Sterne. Sie können Gene mit hoher Effizienz und fast ohne schädigende Nebenwirkungen auch in solche Zellen transportieren, deren Erbinformation bislang nur mithilfe von Viren verändert werden konnte. Diese Erkenntnis eröffnet erstmals die Möglichkeit, bei der gentechnischen Veränderung von Zellen auf den risikobehafteten Einsatz von Viren zu verzichten und stattdessen PDMAEMA-Sterne als Vektoren zu verwenden.

In der Online-Ausgabe der Zeitschrift "Biomacromolecules" berichtet das Bayreuther Team jetzt über eine verwandte Entdeckung. Prof. Dr. Ruth Freitag, Prof. Dr. Axel Müller und ihre Mitarbeiter konnten zeigen, dass es möglich ist, die als Vektoren eingesetzten PDMAEMA-Sterne mit einem magnetischen Kern auszustatten – was deutliche biotechnologische Vorteile mit sich bringt. Auch dieser Forschungserfolg war nur möglich dank einer intensiven fächerübergreifenden Zusammenarbeit auf dem Bayreuther Campus. In den Laboratorien der Bayreuther Polymerchemie wurden die magnetischen PDMAEMA-Sterne hergestellt. Die unmittelbar anschließenden bioprozesstechnischen Tests führten zu dem – für alle Beteiligten überraschenden – Ergebnis, dass sich diese Moleküle geradezu als 'Premium-Vektoren' für die gentechnische Veränderung von Zellen eignen.

Biotechnologische Vorteile: Hohe Transfektionseffizienz, schnelle und einfache Auslese der transfizierten Zellen

Ebenso wie die früher erprobten PDMAEMA-Sterne sind auch die magnetischen PDMAEMA-Sterne in der Lage, Gene in eine Vielzahl lebender Zellen einzuschleusen. In der Forschung wird dieser Vorgang als Transfektion bezeichnet. Mit PDMAEMA-Sternen, ob magnetisch oder nicht, können – und das ist neu – sogar solche Zellen transfiziert werden, die sich nicht teilen.

Die Verwendung der magnetischen PDMAEMA-Sterne führte nun zu einer unerwartet hohen Gentransfer-Effizienz. "Bei der Transfektion von Zellen einer Zelllinie, die vom Chinesischen Hamster (CHO) abstammt, haben wir wiederholt festgestellt, dass die magnetischen PDMAEMA-Sterne sich durch eine außerordentlich hohe Effizienz auszeichnen", berichtet Prof. Dr. Ruth Freitag. "Der Anteil der Zellen, in deren Kerne die gewünschte Erbinformation eingedrungen ist, übersteigt deutlich den Anteil, den wir bislang bei Transfektionen mit Polyethylenimin (PEI) erreicht haben." Linear aufgebautes PEI gilt in der Biotechnologie bis heute als 'Goldstandard' bei der Transfektion von Zellen und kommt daher weltweit in gentechnischen Verfahren zum Einsatz.

Zusätzlich zu ihrer außergewöhnlichen Effizienz haben die neuen Vektoren noch einen weiteren Vorzug: Die PDMAEMA-Sterne behalten ihre magnetische Wirkung auch dann, wenn sie sich innerhalb der Zellen befinden. Deshalb lassen sich die transfizierten Zellen auf eine technisch sehr einfache Weise vollständig von allen übrigen Zellen abtrennen. Ein handelsüblicher starker Magnet genügt, um diese Zellen gezielt aus der Gesamtprobe herauszuziehen. Wie es aussieht, sind PDMAEMA-Sterne mit einem magnetischen Kern derzeit das zuverlässigste Instrument, um in Reinkultur eine möglichst hohe Anzahl lebender Zellen mit verändertem Erbgut zu erhalten – sei es, dass neue Gene eingeschleust, fehlende Gene ergänzt, defekte Gene ersetzt oder die Folgen solcher Schäden abgemildert werden sollen.

Sternförmige Riesenmoleküle mit magnetischem Kern, synthetisiert durch moderne polymerchemische Verfahren

Wie werden die magnetischen PDMAEMA-Sterne im Labor hergestellt? Ausgangspunkt des Verfahrens sind kugelförmige Nanopartikel. Sie gehören zur Klasse der Eisenoxide und besitzen magnetische Eigenschaften. Wegen ihrer besonderen kristallinen Struktur werden sie auch als "Maghämit" bezeichnet. Rundum auf der Oberfläche eines solchen Partikels werden Moleküle befestigt, welche die Ausgangspunkte ("Initiatoren") für den Aufbau einer sternförmigen Struktur bilden. Denn an jedes dieser Moleküle wird durch Polymerisation mehrere hundert Male die gleiche Molekülgruppe angereiht, bis ein langer PDMAEMA-Arm entstanden ist. Dieses Verfahren, das als "Grafting-from" bezeichnet wird, macht den kugelförmigen Nanopartikel zum Mittelpunkt eines großen Moleküls, das schrittweise ein sternförmiges Aussehen gewinnt.
Das sternförmige Molekül hat, sobald es fertig hergestellt ist, im Mittel 46 solcher kettenförmigen Arme. Dabei besteht jeder Arm aus nahezu 600 sich wiederholenden Molekülgruppen. Die langen Arme des Partikels weisen wie die Strahlen eines Sterns in alle Richtungen nach außen.

Anmeldung zum Patent

Angesichts der vielversprechenden Anwendungsmöglichkeiten in der Biotechnologie hat die Bayerische Patentallianz (BayPAT), als zentrale Patent- und Vermarktungsagentur der bayerischen Hochschulen, die magnetischen PDMAEMA-Sterne im Namen der Universität Bayreuth zum Patent angemeldet. Die Erfinderberatung der Universität Bayreuth mit Dr. Andreas Kokott und Dr. Heinz-Walter Ludwigs war an der Vorbereitung der Patentanmeldung wesentlich beteiligt.

Veröffentlichung:

Alexander P. Majewski, Anja Schallon, Valérie Jérôme, Ruth Freitag, Axel H. E. Müller, and Holger Schmalz,
Dual-Responsive Magnetic Core-Shell Nanoparticles for Non-Viral Gene Delivery and Cell Separation,
in: Biomacromolecules, Publication Date (Web): Feb 1, 2012
DOI: 10.1021/bm2017756
Zur Eignung von PDMAEMA-Sternen für Gentherapien siehe auch:
http://www.uni-bayreuth.de/blick-in-die-forschung/31-2011.pdf
Ansprechpartner für weitere Informationen:

Prof. Dr. Ruth Freitag
Lehrstuhl für Bioprozesstechnik
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-7371
E-Mail: ruth.freitag@uni-bayreuth.de
Prof. Dr. Axel Müller
Lehrstuhl für Makromolekulare Chemie II
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55- 3399
E-Mail: axel.mueller@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie