Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

'Premium-Vektoren' für die Life Sciences: Magnetische Nanopartikel

05.03.2012
Positiv geladene Sternpolymere mit einem magnetischen Kern eignen sich hervorragend als DNA-Vektoren und haben so vielfältige Anwendungen in den Lebenswissenschaften.
Sie zeichnen sich zunächst durch eine außerordentlich hohe Gentransfer-Effizienz aus und ermöglichen anschließend eine schnelle und einfache Auslese der transfizierten Zellen. Darüber berichtet ein Forschungsteam der Universität Bayreuth in der Online-Ausgabe der Zeitschrift "Biomacromolecules".

Es ist erst fünf Monate her, seit ein Bayreuther Forschungsteam um Prof. Dr. Ruth Freitag (Bioprozesstechnik) und Prof. Dr. Axel Müller (Makromolekulare Chemie II) mit einer Entdeckung an die Öffentlichkeit trat, die weithin internationale Beachtung fand. Die Wissenschaftler haben große sternförmige Polymere entwickelt, die neue Möglichkeiten in der Gentechnik eröffnen. Chemisch gesprochen, handelt es sich bei diesen Molekülen um PDMAEMA-Sterne. Sie können Gene mit hoher Effizienz und fast ohne schädigende Nebenwirkungen auch in solche Zellen transportieren, deren Erbinformation bislang nur mithilfe von Viren verändert werden konnte. Diese Erkenntnis eröffnet erstmals die Möglichkeit, bei der gentechnischen Veränderung von Zellen auf den risikobehafteten Einsatz von Viren zu verzichten und stattdessen PDMAEMA-Sterne als Vektoren zu verwenden.

In der Online-Ausgabe der Zeitschrift "Biomacromolecules" berichtet das Bayreuther Team jetzt über eine verwandte Entdeckung. Prof. Dr. Ruth Freitag, Prof. Dr. Axel Müller und ihre Mitarbeiter konnten zeigen, dass es möglich ist, die als Vektoren eingesetzten PDMAEMA-Sterne mit einem magnetischen Kern auszustatten – was deutliche biotechnologische Vorteile mit sich bringt. Auch dieser Forschungserfolg war nur möglich dank einer intensiven fächerübergreifenden Zusammenarbeit auf dem Bayreuther Campus. In den Laboratorien der Bayreuther Polymerchemie wurden die magnetischen PDMAEMA-Sterne hergestellt. Die unmittelbar anschließenden bioprozesstechnischen Tests führten zu dem – für alle Beteiligten überraschenden – Ergebnis, dass sich diese Moleküle geradezu als 'Premium-Vektoren' für die gentechnische Veränderung von Zellen eignen.

Biotechnologische Vorteile: Hohe Transfektionseffizienz, schnelle und einfache Auslese der transfizierten Zellen

Ebenso wie die früher erprobten PDMAEMA-Sterne sind auch die magnetischen PDMAEMA-Sterne in der Lage, Gene in eine Vielzahl lebender Zellen einzuschleusen. In der Forschung wird dieser Vorgang als Transfektion bezeichnet. Mit PDMAEMA-Sternen, ob magnetisch oder nicht, können – und das ist neu – sogar solche Zellen transfiziert werden, die sich nicht teilen.

Die Verwendung der magnetischen PDMAEMA-Sterne führte nun zu einer unerwartet hohen Gentransfer-Effizienz. "Bei der Transfektion von Zellen einer Zelllinie, die vom Chinesischen Hamster (CHO) abstammt, haben wir wiederholt festgestellt, dass die magnetischen PDMAEMA-Sterne sich durch eine außerordentlich hohe Effizienz auszeichnen", berichtet Prof. Dr. Ruth Freitag. "Der Anteil der Zellen, in deren Kerne die gewünschte Erbinformation eingedrungen ist, übersteigt deutlich den Anteil, den wir bislang bei Transfektionen mit Polyethylenimin (PEI) erreicht haben." Linear aufgebautes PEI gilt in der Biotechnologie bis heute als 'Goldstandard' bei der Transfektion von Zellen und kommt daher weltweit in gentechnischen Verfahren zum Einsatz.

Zusätzlich zu ihrer außergewöhnlichen Effizienz haben die neuen Vektoren noch einen weiteren Vorzug: Die PDMAEMA-Sterne behalten ihre magnetische Wirkung auch dann, wenn sie sich innerhalb der Zellen befinden. Deshalb lassen sich die transfizierten Zellen auf eine technisch sehr einfache Weise vollständig von allen übrigen Zellen abtrennen. Ein handelsüblicher starker Magnet genügt, um diese Zellen gezielt aus der Gesamtprobe herauszuziehen. Wie es aussieht, sind PDMAEMA-Sterne mit einem magnetischen Kern derzeit das zuverlässigste Instrument, um in Reinkultur eine möglichst hohe Anzahl lebender Zellen mit verändertem Erbgut zu erhalten – sei es, dass neue Gene eingeschleust, fehlende Gene ergänzt, defekte Gene ersetzt oder die Folgen solcher Schäden abgemildert werden sollen.

Sternförmige Riesenmoleküle mit magnetischem Kern, synthetisiert durch moderne polymerchemische Verfahren

Wie werden die magnetischen PDMAEMA-Sterne im Labor hergestellt? Ausgangspunkt des Verfahrens sind kugelförmige Nanopartikel. Sie gehören zur Klasse der Eisenoxide und besitzen magnetische Eigenschaften. Wegen ihrer besonderen kristallinen Struktur werden sie auch als "Maghämit" bezeichnet. Rundum auf der Oberfläche eines solchen Partikels werden Moleküle befestigt, welche die Ausgangspunkte ("Initiatoren") für den Aufbau einer sternförmigen Struktur bilden. Denn an jedes dieser Moleküle wird durch Polymerisation mehrere hundert Male die gleiche Molekülgruppe angereiht, bis ein langer PDMAEMA-Arm entstanden ist. Dieses Verfahren, das als "Grafting-from" bezeichnet wird, macht den kugelförmigen Nanopartikel zum Mittelpunkt eines großen Moleküls, das schrittweise ein sternförmiges Aussehen gewinnt.
Das sternförmige Molekül hat, sobald es fertig hergestellt ist, im Mittel 46 solcher kettenförmigen Arme. Dabei besteht jeder Arm aus nahezu 600 sich wiederholenden Molekülgruppen. Die langen Arme des Partikels weisen wie die Strahlen eines Sterns in alle Richtungen nach außen.

Anmeldung zum Patent

Angesichts der vielversprechenden Anwendungsmöglichkeiten in der Biotechnologie hat die Bayerische Patentallianz (BayPAT), als zentrale Patent- und Vermarktungsagentur der bayerischen Hochschulen, die magnetischen PDMAEMA-Sterne im Namen der Universität Bayreuth zum Patent angemeldet. Die Erfinderberatung der Universität Bayreuth mit Dr. Andreas Kokott und Dr. Heinz-Walter Ludwigs war an der Vorbereitung der Patentanmeldung wesentlich beteiligt.

Veröffentlichung:

Alexander P. Majewski, Anja Schallon, Valérie Jérôme, Ruth Freitag, Axel H. E. Müller, and Holger Schmalz,
Dual-Responsive Magnetic Core-Shell Nanoparticles for Non-Viral Gene Delivery and Cell Separation,
in: Biomacromolecules, Publication Date (Web): Feb 1, 2012
DOI: 10.1021/bm2017756
Zur Eignung von PDMAEMA-Sternen für Gentherapien siehe auch:
http://www.uni-bayreuth.de/blick-in-die-forschung/31-2011.pdf
Ansprechpartner für weitere Informationen:

Prof. Dr. Ruth Freitag
Lehrstuhl für Bioprozesstechnik
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-7371
E-Mail: ruth.freitag@uni-bayreuth.de
Prof. Dr. Axel Müller
Lehrstuhl für Makromolekulare Chemie II
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55- 3399
E-Mail: axel.mueller@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

nachricht Bakterieller Kontrollmechanismus zur Anpassung an wechselnde Bedingungen
13.12.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie