Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit zwei neuen Virtuellen-Instituten verstärkt das HZB die Zusammenarbeit mit den Universitäten

04.07.2012
Dünnschichtsolarzellen und topologische Quantenphasen – ein Kernthema auf dem Weg zum Quantencomputer - werden nun im Verbund erforscht.

Am Helmholtz-Zentrum Berlin (HZB) fördert die Helmholtz-Gemeinschaft zwei neue „Helmholtz-Virtuelle-Institute“. Im Verbund forschen Wissenschaftlerinnen und Wissenschaftler mit Partnern aus Universitäten und anderen renommierten Forschungsinstituten aus dem In- und Ausland an gemeinsamen Themen.

Das HZB und seine Partner sind mit ihren Anträgen zur gemeinsamen Weiterentwicklung von Dünnschichtsolarzellen für die Photovoltaik und die Suche nach so genannten topologischen Quantenphasen erfolgreich gewesen. Letztere werden als bedeutsam für die Entwicklung so genannter Quantencomputer eingeschätzt.

Die Virtuellen-Institute werden mit jährlich bis zu 600.000 Euro über drei bis fünf Jahre aus dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft gefördert. Dazu kommen Eigenmittel der Zentren, so dass die Forschungsvorhaben insgesamt mit bis zu 900.000 Euro jährlich finanziert werden können.

Mikrostruktur-Kontrolle für Dünnschicht-Solarzellen
Photovoltaische Bauelemente, die zur direkten Umwandlung von Sonnenenergie in Elektrizität betrieben werden, sind zu einer der wichtigsten sauberen Energiequellen geworden. Die Optimierung von Dünnschichtsolarzellen für solche Anwendungen beruhte bislang vor allem auf Ausprobieren – „trial and error“. Ein exaktes Verständnis darüber, wie Wachstumsprozesse, die Mikrostruktur (z. B. Versetzungen, Korngrenzen und Eigenspannung) der polykristallinen Absorberschicht und die elektrischen und opto-elektronischen Eigenschaften der Solarzelle zusammenwirken, würden sich sehr positiv auf die Weiterentwicklung dieser Bauelemente und die Erzielung höherer Wirkungsgrade auswirken. Dieser Thematik widmet sich das Virtuelle-Institut „Microstructure control for thin-film solar cells”. In ihm wollen Wissenschaftlerinnen und Wissenschaftler des HZB und seiner Partner die komplexe Mikrostruktur polykristalliner Absorberschichten in Dünnschichtsolarzellen untersuchen. Dabei wollen sie die Ausbildung der Mikrostruktur während des Wachstums von dünnen Schichten verstehen und kontrollieren lernen.
„Mit dem theoretischen Verständnis der Zusammenhänge, gekoppelt mit Simulationen und Modellierung, wollen wir hocheffiziente Solarzellen realisieren. Dabei arbeiten wir an zwei technologisch gut etablierten, polykristallinen Systemen: Silizium sowie Kupfer-Indium-Gallium-Selenid (Cu(In,Ga)Se2)“, sagt Sprecherin Susan Schorr, Professorin an der Freien Universität Berlin und Leiterin der Abteilung Kristallographie am HZB. Der im Virtuellen Institut entwickelte Forschungsansatz und die erarbeiteten Analysestrategien werden auf weitere komplexe Materialsysteme übertragbar sein. Partner des HZB in diesem Helmholtz-Virtuellen-Institut sind die Freie Universität Berlin, die Technische Universität Berlin, das MATHEON (DFG Forschungszentrum Mathematik für Schlüsseltechnologien) und die Technische Universität Darmstadt. Diese Partner werden ergänzt durch assoziierte Gruppen des Max-Planck-Institutes für Intelligente Systeme, des Max-Planck Instituts für Eisenforschung, der University of Oxford, der ETH Zürich, und von SuperSTEM Daresbury (EPSRC National Facility for Aberration Corrected STEM).

Forschung für Quantencomputer
Im zweiten vom HZB koordinierten Helmholtz-Virtuellen-Institut geht es um das kollektive Verhalten und neue Phasen der Materie. Der unglaubliche Reichtum von metallischen, magnetischen und supraleitenden Verbindungen bringt seit Jahrzehnten unerwartete Ergebnisse in Grundlagenforschung und Materialwissenschaften hervor. Dabei findet zurzeit ein revolutionärer Umbruch bei der Suche nach neuen Phasen statt: Im Fokus stehen so genannte topologische Quantenphasen. Ihnen widmet sich das Virtuelle Institut mit der Bezeichnung „New states of matter and their excitations“. Verschiedene Erkenntnisse in diesem Feld haben in jüngster Zeit Wissenschaftler mit unterschiedlichem Hintergrund zusammengebracht. Die bisherigen Erkenntnisse haben – teilweise basierend auf der Aussicht, topologische Quantencomputer zu realisieren – zu einer substantiellen finanziellen Förderung in Europa, Asien und Nordamerika geführt. In Deutschland bestehen derzeit keine vergleichbaren Aktivitäten. Das Helmholtz-Virtuelle-Institut am HZB schafft hier Abhilfe. Es zielt darauf ab, führende Wissenschaftler zusammenzubringen, damit sie gemeinsam topologische Quantenphasen erforschen. Beteiligt an diesem Virtuellen-Institut sind die Freie Universität Berlin, das Max-Planck-Institut für Physik komplexer Systeme in Dresden, die Technische Universität Dresden, die Universität Göttingen und die Technische Universität Dortmund.

Weitere Informationen:
Prof. Susan Schorr
Abteilung Kristallographie
Tel.: +49 (0)30-8062-42317
susan.schorr@helmholtzberlin.de

Prof. Alan Tennant
Institut Komplexe Magnetische Materialien
Tel.: +49 (0)30-8062-42751
tennant@helmholtz-berlin.de

Pressestelle
Dr. Ina Helms
Tel.: +49 (0)30-8062-42034
Fax: +49 (0)30-8062-42998
ina.helms@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Die Verbindung macht’s
24.03.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Gleich und Gleich gesellt sich gern!
21.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten