Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationaler Masterstudiengang: TU Kaiserslautern bildet Experten für die Quantentechnik aus

15.03.2017

Ob Laser, Mikroprozessor oder Smartphone – sie funktionieren dank Quantenmechanik. Viele dieser Quantenphänomene hat die Forschung mittlerweile verstanden. Die Erkenntnisse werden weitere Techniken hervorbringen. Um neue Quantentechniken zu entwickeln, braucht es aber Experten, die sich mit der komplexen Materie auskennen. Zum nächsten Wintersemester führt die Technische Universität (TU) Kaiserslautern den englischsprachigen Masterstudiengang „Advanced Quantum Physics“ ein. Er vermittelt wichtige Grundlagen zur Quantenwelt und den Umgang mit moderner Quantentechnik. Studieninteressierte aus dem Ausland können sich bis zum 30. April bewerben, aus Deutschland haben sie Zeit bis zum 31. August

Im August letzten Jahres haben Chinesen den ersten Quanten-Satelliten ins All geschickt. Er soll eine abhörsichere Kommunikation gewährleisten. Beispiele wie dieses zeigen, dass die Quantenforschung rasant voranschreitet: Viele quantenmechanische Grundlagen kann die Forschung mittlerweile erklären.


Der neue Masterstudiengang vermittelt Techniken, mit denen die Quantenwelt erforscht werden kann.

Foto: TU Kaiserslautern

„Die Europäische Kommission möchte in den nächsten Jahren bis zu einer Milliarde Euro investieren, um Erkenntnisse aus der Quantenforschung in die Anwendung zu überführen“, sagt Professor Dr. Artur Widera, der an der TU Kaiserslautern zu Quantensystemen forscht. Dabei geht es nicht nur um leistungsstarke Quantencomputer und abhörsichere Kommunikationsnetze, sondern auch um weitere Techniken, wie etwa neuartige Sensoren für bildgebende Verfahren in der medizinischen Diagnostik oder Simulationsprogramme für Werkstoffforschung und Maschinenbau. Auch die Bundesregierung plant eigene Förderprogramme.

Um solche Techniken zu entwickeln und anzuwenden, braucht es allerdings Experten, die sich in der Welt von Quanten, Spins und Co. auskennen. Die TU Kaiserslautern trägt diesem Bedarf Rechnung: Zum Wintersemester 2016/17 führt sie den viersemestrigen Masterstudiengang „Advanced Quantum Physics“ ein. Er ist damit bundesweit einer der ersten Studienangebote, bei dem der Schwerpunkt auf der Quantenforschung und Quantentechnologie liegt.

„Das Studium beinhaltet viele Praktika. Außerdem können die Studierenden eigenständig im Labor arbeiten. Wir vermitteln unter anderem wichtige Techniken, die notwendig sind, um die Quantenwelt zu erforschen“, so Widera weiter. Darüber hinaus stehen Themen wie Photonik, Festkörperphysik, das Verarbeiten von Quanteninformationen und mikrophysikalische Grundlagen der Materialwissenschaft auf dem Programm. Es geht außerdem um theoretische Quantenphysik. „Studierende lernen komplexe Quantensysteme und -effekte zu beschreiben. Diese theoretischen Arbeiten sind ein wichtiger Teil der Forschung“, fährt Widera fort.

Während des Masterstudiengangs haben die Studentinnen und Studenten Gelegenheit, im Rahmen eines Praktikums oder als wissenschaftliche Hilfskraft an Forschungsprojekten der einzelnen Arbeitsgruppen mitzuwirken. Alle Vorlesungen und Seminare finden in englischer Sprache statt. Die Masterarbeit wird in einer der Arbeitsgruppen angefertigt.

An der TU Kaiserslautern bildet die Quantenforschung einen eigenen Schwerpunkt: Gleich in vier Sonderforschungsbereichen gehen Wissenschaftlerinnen und Wissenschaftler Quantenphänomenen auf den Grund. Professor Dr. Michael Fleischhauer und sein Team arbeiten zum Beispiel daran, verschiedene Quantensysteme an ihre Umgebung zu koppeln. Bislang sind solche Systeme sehr empfindlich und nicht stabil. Sie können nur unter bestimmten Bedingungen bestehen. Die Forscher arbeiten an einem ganz neuen Zugang, um Quantensysteme zu kontrollieren.

Auch die Europäische Union fördert Arbeiten hierzu. So hat Professor Widera einen ERC Starting Grant – einen der höchsten Auszeichnungen der EU – für seine Arbeiten auf diesem Gebiet erhalten. Er erforscht unter anderem Quanteneigenschaften von Supraflüssigkeiten, mit denen er die bislang unverstandenen Mechanismen von Supraleitern verstehen möchte. Widera nutzt dafür Modelle, mit denen er die Quantenwelt simuliert.

Dazu fängt er einzelne Atome gewissermaßen in Käfigen aus ultrakalten Gaswolken und Laserlicht ein, um ihre quantenmechanischen Eigenschaften zu studieren. Auch Physik-Professor Dr. Burkhard Hillebrands ist für seine Arbeiten mit einem ERC Advanced Grant ausgezeichnet worden. Er widmet sich sogenannten Magnon-Quantenteilchen, mit denen das Verarbeiten und Speichern von Daten künftig wesentlich leistungsfähiger werden könnte.

Am Landesforschungszentrum Optik und Materialwissenschaften, OPTIMAS, arbeiten zudem Forscher aus Physik, Chemie, Biologie und Materialwissenschaften interdisziplinär zusammen, um Wechselwirkungen zwischen Spin, Licht und Materie zu untersuchen.

Wer an einem Studienplatz interessiert ist, sollte einen Bachelorabschluss besitzen, der den Studieninhalten des Bachelorangebots in der Physik an der TU Kaiserslautern entspricht.

Studieninteressierte aus dem Ausland müssen sich bis zum 30. April bewerben, aus Deutschland haben sie Zeit bis 31. August.

Bewerbung für Studieninteressierte aus dem Ausland:
University of Kaiserslautern
Department of International Affairs: ISGS
Gottlieb Daimler Str. 47
D 67663 Kaiserslautern
Germany

Weiter Informationen unter: https://www.physik.uni-kl.de/quantum-master

Fragen beantwortet:
Prof. Dr. Artur Widera
Lehrgebiet Quantenphysik einzelner Atome und ultrakalter Quantengase
Tel.: 0631 205-4130
E-Mail: widera[at]physik.uni-kl.de

Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Technik unterstützt Inklusion in der Arbeitswelt
06.03.2018 | Karlsruher Institut für Technologie

nachricht Weiterbildung – für die Arbeitswelt von morgen unerlässlich!
15.02.2018 | Bundesinstitut für Berufsbildung (BIBB)

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics