Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn besser verstehen

14.01.2013
Simulation Laboratory Neuroscience in Jülich eingeweiht

In unseren Köpfen arbeitet ein gigantisches Netzwerk. Um die ungeheure Komplexität des menschlichen Gehirns mit seinen rund 100 Milliarden eng miteinander verknüpften Nervenzellen zu verstehen, setzt die Forschung zunehmend auf Supercomputer. Neue Möglichkeiten hierfür bietet das Simulation Laboratory Neuroscience (SLNS) am Forschungszentrum Jülich, welches nun eingeweiht wurde.


Nervenfaserverläufe in Mausgehirnen, dargestellt mit der Methode des Polarized Light Imaging. In diesem Bild sind die Faserverläufe in einem einzelnen, dünnen Schnitt (70 µm Dicke) farbig hervorgehoben. Jedem gemessenen Verlauf wird eine Farbe zugeordnet.
Quelle: Amunts, Zilles, Axer et. al./ Forschungszentrum Jülich


Einblick in das Innere einer 3D-Rekonstruktion eines menschlichen Gehirns. Die unterschiedlichen Farben zeigen verschiedene Verläufe von Nervenfaserbahnen an. Fasern sind die Grundlage von Netzwerken von Nervenzellen, die verschiedene Hirnfunktionen ermöglichen. Mit der am Jülicher Institut für Neurowissenschaften und Medizin (INM-1)entwickelten dreidimensionalen Polarisationsbildgebung (Polarized Light Imaging) ist es möglich, selbst kleinste Faserverbindungen (hier dargestellt als dreidimensionale Röhren oder "tubes") mit bislang unerreichtem Detailreichtum sichtbar zu machen.
Quelle: Amunts, Axer et al./ Forschungszentrum Jülich

Die Erforschung des menschlichen Gehirns ist nach wie vor eine der großen Herausforderungen für die Wissenschaft. Je besser Struktur, Funktions- und Arbeitsweise verstanden werden, desto größer sind die Chancen, beispielsweise Erkrankungen des Nervensystems frühzeitig zu erkennen und zu behandeln. Hirnmodelle und Simulationen, die die Forschung entwickelt, orientieren sich dabei immer enger an der Realität und müssen deshalb immer mehr und komplexere Informationen berücksichtigen.

Im neuen Simulation Laboratory Neuroscience arbeiten unter der Leitung von Prof. Abigail Morrison Neurowissenschaftler, Mediziner, Informatiker, Mathematiker und Physiker intensiv zusammen, um den Einsatz von Computersimulationen des Gehirns für die Supercomputer zu optimieren. "Nur mit einem solch breiten interdisziplinären Ansatz können wir den großen Herausforderungen in der heutigen Neurowissenschaft erfolgreich begegnen", erläutert Abigail Morrison die Zusammenstellung ihres Teams.

Das Simulation Laboratory Neuroscience wird von der Helmholtz-Gemeinschaft im Rahmen des Helmholtz-Portfoliothemas "Supercomputing and Modelling for the Human Brain (SMHB)" und von der Jülich Aachen Research Alliance (JARA) gefördert.

Eine zentrale Aufgabe des neuen Simulation Labs sieht Prof. Thomas Lippert, Leiter des Jülich Supercomputing Centres (JSC) und einer der beiden Sprecher des Portfolios, in der Unterstützung der neurowissenschaftlichen Forschung bei der Optimierung von Anwendungen für den Einsatz auf den kontinuierlich weiterentwickelten Hochleistungsrechnern im JSC, wie JUQUEEN, der im Februar eingeweiht wird.

"Das Simulation Lab Neuroscience hat für die neurowissenschaftliche Community einen enorm hohen Stellenwert. Modellierung und Simulation sind sowohl aus Sicht der Grundlagenwissenschaft als auch in Hinblick auf die Entwicklung neuer therapeutischer und diagnostischer Ansätze von zentraler Bedeutung", so Prof. Katrin Amunts, ebenfalls Sprecherin des Portfolios.

Eine besonders ausgeprägte Verbindung besteht zum Nationalen Bernstein Netzwerk Computational Neuroscience. Diese vom Bundesministerium für Bildung und Forschung (BMBF) mit über 170 Millionen Euro geförderte Initiative vernetzt rund 200 Arbeitsgruppen, die in dieser neuen Forschungsdisziplin arbeiten. Als "Bernstein Facility Simulation and Database Technology" stellt das Simulation Laboratory Neuroscience sein Know-how zur Verfügung, damit die Forscher Supercomputer-Ressourcen effizient nutzen können. "Damit wird in Deutschland Computational Neuroscience noch weiter an das Supercomputing herangebracht", so Prof. Sebastian M. Schmidt, Mitglied des Vorstandes des Forschungszentrums Jülich, bei der Eröffnungsveranstaltung.

Weitere Informationen:
Jülich Supercomputing Centre (JSC)
Institut für Neurowissenschaften und Medizin, Bereich Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Institut für Neurowissenschaften und Medizin, Bereich Computational and Systems Neuroscience (INM-6)

Bernstein Netzwerk Computational Neuroscience
Simulation Laboratory Neuroscience - Bernstein Facility Simulation and Database Technology

Ansprechpartner:

Prof. Dr. Abigail Morrison,
Simulation Lab Neuroscience (SLNS) and INM-6
a.morrison@fz-juelich.de

Pressekontakt:
Annette Stettien, Forschungszentrum Jülich
Tel.: 02461-61 2388
a.stettien@fz-juelich.de
Simone Cardoso de Oliveira,
Bernstein Netzwerk Computational Neuroscience
Tel: 0761-203-9583
cardoso@bcos.uni-freiburg.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen
22.09.2017 | Westfälische Wilhelms-Universität Münster

nachricht Meilenstein in der Forschung: Enabling Innovation
06.09.2017 | Rheinische Fachhochschule Köln

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie