Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn besser verstehen

14.01.2013
Simulation Laboratory Neuroscience in Jülich eingeweiht

In unseren Köpfen arbeitet ein gigantisches Netzwerk. Um die ungeheure Komplexität des menschlichen Gehirns mit seinen rund 100 Milliarden eng miteinander verknüpften Nervenzellen zu verstehen, setzt die Forschung zunehmend auf Supercomputer. Neue Möglichkeiten hierfür bietet das Simulation Laboratory Neuroscience (SLNS) am Forschungszentrum Jülich, welches nun eingeweiht wurde.


Nervenfaserverläufe in Mausgehirnen, dargestellt mit der Methode des Polarized Light Imaging. In diesem Bild sind die Faserverläufe in einem einzelnen, dünnen Schnitt (70 µm Dicke) farbig hervorgehoben. Jedem gemessenen Verlauf wird eine Farbe zugeordnet.
Quelle: Amunts, Zilles, Axer et. al./ Forschungszentrum Jülich


Einblick in das Innere einer 3D-Rekonstruktion eines menschlichen Gehirns. Die unterschiedlichen Farben zeigen verschiedene Verläufe von Nervenfaserbahnen an. Fasern sind die Grundlage von Netzwerken von Nervenzellen, die verschiedene Hirnfunktionen ermöglichen. Mit der am Jülicher Institut für Neurowissenschaften und Medizin (INM-1)entwickelten dreidimensionalen Polarisationsbildgebung (Polarized Light Imaging) ist es möglich, selbst kleinste Faserverbindungen (hier dargestellt als dreidimensionale Röhren oder "tubes") mit bislang unerreichtem Detailreichtum sichtbar zu machen.
Quelle: Amunts, Axer et al./ Forschungszentrum Jülich

Die Erforschung des menschlichen Gehirns ist nach wie vor eine der großen Herausforderungen für die Wissenschaft. Je besser Struktur, Funktions- und Arbeitsweise verstanden werden, desto größer sind die Chancen, beispielsweise Erkrankungen des Nervensystems frühzeitig zu erkennen und zu behandeln. Hirnmodelle und Simulationen, die die Forschung entwickelt, orientieren sich dabei immer enger an der Realität und müssen deshalb immer mehr und komplexere Informationen berücksichtigen.

Im neuen Simulation Laboratory Neuroscience arbeiten unter der Leitung von Prof. Abigail Morrison Neurowissenschaftler, Mediziner, Informatiker, Mathematiker und Physiker intensiv zusammen, um den Einsatz von Computersimulationen des Gehirns für die Supercomputer zu optimieren. "Nur mit einem solch breiten interdisziplinären Ansatz können wir den großen Herausforderungen in der heutigen Neurowissenschaft erfolgreich begegnen", erläutert Abigail Morrison die Zusammenstellung ihres Teams.

Das Simulation Laboratory Neuroscience wird von der Helmholtz-Gemeinschaft im Rahmen des Helmholtz-Portfoliothemas "Supercomputing and Modelling for the Human Brain (SMHB)" und von der Jülich Aachen Research Alliance (JARA) gefördert.

Eine zentrale Aufgabe des neuen Simulation Labs sieht Prof. Thomas Lippert, Leiter des Jülich Supercomputing Centres (JSC) und einer der beiden Sprecher des Portfolios, in der Unterstützung der neurowissenschaftlichen Forschung bei der Optimierung von Anwendungen für den Einsatz auf den kontinuierlich weiterentwickelten Hochleistungsrechnern im JSC, wie JUQUEEN, der im Februar eingeweiht wird.

"Das Simulation Lab Neuroscience hat für die neurowissenschaftliche Community einen enorm hohen Stellenwert. Modellierung und Simulation sind sowohl aus Sicht der Grundlagenwissenschaft als auch in Hinblick auf die Entwicklung neuer therapeutischer und diagnostischer Ansätze von zentraler Bedeutung", so Prof. Katrin Amunts, ebenfalls Sprecherin des Portfolios.

Eine besonders ausgeprägte Verbindung besteht zum Nationalen Bernstein Netzwerk Computational Neuroscience. Diese vom Bundesministerium für Bildung und Forschung (BMBF) mit über 170 Millionen Euro geförderte Initiative vernetzt rund 200 Arbeitsgruppen, die in dieser neuen Forschungsdisziplin arbeiten. Als "Bernstein Facility Simulation and Database Technology" stellt das Simulation Laboratory Neuroscience sein Know-how zur Verfügung, damit die Forscher Supercomputer-Ressourcen effizient nutzen können. "Damit wird in Deutschland Computational Neuroscience noch weiter an das Supercomputing herangebracht", so Prof. Sebastian M. Schmidt, Mitglied des Vorstandes des Forschungszentrums Jülich, bei der Eröffnungsveranstaltung.

Weitere Informationen:
Jülich Supercomputing Centre (JSC)
Institut für Neurowissenschaften und Medizin, Bereich Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Institut für Neurowissenschaften und Medizin, Bereich Computational and Systems Neuroscience (INM-6)

Bernstein Netzwerk Computational Neuroscience
Simulation Laboratory Neuroscience - Bernstein Facility Simulation and Database Technology

Ansprechpartner:

Prof. Dr. Abigail Morrison,
Simulation Lab Neuroscience (SLNS) and INM-6
a.morrison@fz-juelich.de

Pressekontakt:
Annette Stettien, Forschungszentrum Jülich
Tel.: 02461-61 2388
a.stettien@fz-juelich.de
Simone Cardoso de Oliveira,
Bernstein Netzwerk Computational Neuroscience
Tel: 0761-203-9583
cardoso@bcos.uni-freiburg.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Wie ein Roboter Kita-Kindern Sprachen beibringt
14.07.2017 | Universität Bielefeld

nachricht MINT Nachwuchsbarometer 2017: Digitale Bildung in Deutschland braucht ein Update
22.06.2017 | acatech - Deutsche Akademie der Technikwissenschaften

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten