Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG bewilligt Schwerpunktprogramm

20.04.2011
Die Deutsche Forschungsgemeinschaft (DFG) hat ein bundesweit ausgerichtetes und an der TU Kaiserslautern sowie der Universität des Saarlandes koordiniertes Schwerpunktprogramm bewilligt.

Koordinator des Programms mit dem Titel "Ultraschnelle und zeitlich präzise Informationsverarbeitung im normalen und funktionsgestörten Hörsystem" ist Professor Eckhard Friauf vom Fachbereich Biologie der TU Kaiserslautern, zusammen mit Professorin Jutta Engel von der Universität des Saarlandes/Homburg. Das Schwerpunktprogramm hat einen Finanzumfang von 2,1 Millionen Euro pro Jahr.

Hörstörungen, also der vollständige oder teilweise Verlust des Hörvermögens, stellen die häufigste Sinnesstörung bei Menschen dar; zurzeit sind ca. 14 Prozent der Bevölkerung davon betroffen. Während Mittelohrbasierter Hörverlust gut behandelt werden kann, gibt es noch keine ursächliche Behandlungsmöglichkeit für sensorineurale Schwerhörigkeit, die das Innenohr und/oder den Hörnerv betrifft. Die Qualität der prothetischen Versorgung der sensorineuralen Schwerhörigkeit durch Hörgeräte und Cochlea- und Hirnstammimplantate ist unbefriedigend. Selbst wenn diese Hörprothesen unter Optimalbedingungen Sprachverständnis ermöglichen, werden zeitliche Aspekte der auditorischen Signale unzureichend übermittelt, wodurch es zu stark beeinträchtigter Spracherkennung, Problemen bei der Signal-Rausch-Unterscheidung und großen Problemen bei der Schalllokalisation kommt.

Im Mittelpunkt des neuen Schwerpunktprogramms steht die Frage, wie zeitliche Genauigkeit beim Hören, die erstaunlicherweise im Mikrosekundenbereich abläuft, durch die zugrundeliegenden molekularen und zellulären Strukturen sowie die neuronalen Schaltkreise generiert wird. Diese Substrate sollen identifiziert und dann ihre Funktion und Fehlfunktion im peripheren wie auch im zentralen auditorischen System entschlüsselt werden. Sowohl normale als auch funktionsgestörte Hörmechanismen werden angesprochen, wodurch Grundlagenforschung unmittelbar mit krankheitsorientierter Forschung verknüpft wird. Die beteiligten Forscher werden ihre Arbeiten auf das Innenohr, den Hörnerv und den auditorischen Hirnstamm fokussieren, bis hinauf zum Mittelhirn. Die Forschung wird vornehmlich an Säugetieren durchgeführt, einschließlich Menschen.

Ziel ist es, ein umfassendes Wissen von den Mechanismen zu gewinnen, die ultraschnelle Informationsverarbeitung mit hoher Präzision ermöglichen, mit dem Zweck, ein fundamental verbessertes Verständnis über die Ursachen von Hörstörungen sowie Ansätze für bessere therapeutische Maßnahmen zu erhalten. Um dieses Ziel zu erreichen, wird das Schwerpunktprogramm renommierte und junge Kollegen aus der Physiologie, Anatomie, Human- und Mausgenetik, Computational Neuroscience und Verhaltensbiologie vernetzen, die bislang nicht an solch einer Initiative beteiligt waren. Das Schwerpunktprogramm wird ihre Kernkompetenzen bündeln und enge, synergistische Interaktionen zwischen Experten aus unterschiedlichen Disziplinen sicherstellen. Die Forscher werden ein breites Repertoire an hochmodernen und innovativen Technologien einsetzen (zellspezifische Cre-Linien, virale Genapplikation, Next Generation Sequenzierung, hochauflösende Mikroskopie). Einige der neuen Spitzentechnologien sollen etabliert und dem Konsortium verfügbar gemacht werden.

Da das junge Feld "Kampf gegen Sinnesstörungen" sich rasch entwickelt und die Häufigkeit von Hörstörungen drastisch zunimmt, ist es zeitgemäß, sich in einem interdisziplinären nationalen Forschungsprogramm zu vereinen. Solch ein Schwerpunktprogramm ist auch von großer Bedeutung, um die wichtige internationale Rolle der deutschen Wissenschaft auf diesem Gebiet zu stärken.

Die DFG richtet 2011 insgesamt 13 neue Schwerpunktprogramme ein. Sie sollen die in Deutschland und darüber hinaus vorhandene wissenschaftliche Expertise zu besonders aktuellen oder sich gerade bildenden Forschungsgebieten vernetzen. Ferner sollen sie den wissenschaftlichen Nachwuchs fördern.

Die 13 neuen Schwerpunktprogramme wurden aus insgesamt 57 eingereichten Konzepten ausgewählt. Für sie stehen im ersten Förderjahr insgesamt circa 24 Millionen Euro und in der ersten Förderperiode (drei Jahre) gut 70 Millionen Euro zur Verfügung. Die Schwerpunktprogramme der DFG arbeiten in der Regel sechs Jahre. Mit den nun bewilligten 13 Einrichtungen fördert die DFG ab 2012 insgesamt 80 SPP.

Kontakt:

Prof. Dr. Eckhard Friauf
TU Kaiserslautern
Lehrgebiet Tierphysiologie
Tel.: 0631/205-2424
E-mail: eckhard.friauf@biologie.uni-kl.de
http://www.uni-kl.de/FB-Biologie/AG-Friauf

Thomas Jung | idw
Weitere Informationen:
http://www.uni-kl.de
http://www.uni-kl.de/FB-Biologie/AG-Friauf

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen
22.09.2017 | Westfälische Wilhelms-Universität Münster

nachricht Meilenstein in der Forschung: Enabling Innovation
06.09.2017 | Rheinische Fachhochschule Köln

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie