Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn bei der Arbeit zusehen: Neue "Bernstein-Gruppe" an der RUB

23.04.2007
BMBF fördert Forschung in "Computational Neuroscience"

In jeder Millisekunde sind im Gehirn Millionen von Nervenzellen aktiv, um den fortwährenden Informationsstrom aus der Außenwelt über Sensoren mit Prozessen der neuronalen Innenwelt zu verbinden. Wie diese hochdynamischen Prozesse ablaufen und funktionieren, untersuchen die Bochumer Neurowissenschaftler Professor Gregor Schöner, Juniorprofessor Dirk Jancke und Juniorprofessor Christian Igel. Seit März fördert das Bundesministerium für Bildung und Forschung (BMBF) dieses Projekt als "Bernstein-Gruppe" mit rund 1 Million Euro für zunächst drei Jahre. Die Bochumer Forscher sind damit Teil des nationalen Netzwerkes "Computational Neuroscience".

Theorie mit neuen experimentellen Ansätzen verbinden

Ziel des Netzwerkes ist es, die fachübergreifende Forschungsrichtung "Computational Neuroscience" in Deutschland zu stärken, um die neuronalen Grundlagen von Hirnleistungen zu verstehen - von der Verarbeitung von Sinnesreizen über Lernen bis zur kognitiven Verhaltensplanung. Die Bochumer Bernstein-Gruppe nutzt die rasant gestiegenen technischen Möglichkeiten, um komplexe Netzwerkdynamiken zu simulieren, und verbindet dies mit neuen bildgebenden Verfahren zur Darstellung von Gehirnaktivität. In den nächsten Jahren entwickeln die Forscher sowohl theoretische Modelle als auch experimentelle Ansätze zum Verständnis des Gehirns.

... mehr zu:
»Felddynamik »Nervenzelle »Population »RUB

Das Gehirn als dynamisches System

Langfristig setzt sich die Bernstein-Gruppe zum Ziel, durch ein eng verzahntes theoretisches und experimentelles Forschungsprogramm die Entstehung höherer Hirnfunktionen zu verstehen. Sie resultieren aus der kontinuierlichen neuronalen Dynamik von Nervennetzen, die Sensorik und Motorik verknüpfen und sich erfahrungsabhängig ändern. Die neuronalen Aktivitäten verlaufen innerhalb komplexer Architekturen, in denen Nervenzellen hochgradig vernetzt sind. Wie das Gehirn die Verarbeitungsprozesse autonom und stabil bewerkstelligt, ist eines der großen Rätsel neurobiologischer Forschung. Jun. Professor Jancke nutzt zur Visualisierung sich rasch ändernder Aktivitätsmuster im Gehirn ein neues optisches Verfahren. Mit Hilfe fluoreszenter Farbstoffe, deren Moleküle sich in die Membranen von Nervenzellen verankern, werden Aktivitätsänderungen durch Lichtsignale sichtbar. Die optische Messapparatur gestattet dabei den gleichzeitigen Blick auf größere Gehirnflächen. So lassen sich in Echtzeit neuronale Prozesse über weitreichende Netzwerkstrukturen erfassen.

Weitverzweigte Netzwerke

Einzelne Neurone vermitteln dabei nur wenige Informationen über die zugrundeliegenden Verarbeitungsprozesse. Vielmehr sind Nervenzellen in weitverzweigten Netzwerken organisiert, die in ihrer Gesamtheit stetig wechselnde Zustände generieren. Die Bochumer Wissenschaftler gehen davon aus, dass sich die komplexe Dynamik solcher Vorgänge durch Wechselwirkungen innerhalb neuronaler Populationen beschreiben lässt.

Neuronale Felder

Mathematisch kann man diese Form der Repräsentation von Information durch neuronale Populationen mit dem Begriff des "neuronalen Feldes" erfassen. So wie in der Physik das elektrische Feld jedem Raumpunkt eine Größe zuordnet, aus der die Kraft auf eine elektrische Ladung abgeleitet werden kann, so ordnet das neuronale Feld jedem möglichen Stimulus eine Größe - die Aktivierung - zu. Die zeitliche Entwicklung der Populationsaktivität modellieren die Wissenschaftler mit Differenzialgleichungen, den Felddynamiken. Sensorische Eingänge, aber auch Wechselwirkungen innerhalb der neuronalen Population tragen zur Felddynamik bei. Professor Schöner nutzt diesen theoretischen Rahmen, um zu verstehen, wie sich Menschen aus dem Fluss der visuellen Information ein Bild der Umwelt machen. Die Identifikation solcher Felddynamiken aus experimentellen Daten und Vorhersage von neuronalen Antworten auf neue Reize sind Gegenstand der Arbeiten von Juniorprofessor Igel. Die Bernstein-Gruppe legt ihren Schwerpunkt dabei auf Modelle der frühen visuellen Verarbeitung und der Beschreibung und Analyse von Lernprozessen in neuronalen Feldern.

Forschungskapazitäten bündeln

Das Rektorat der Ruhr-Universität plant, die interdisziplinär arbeitende Forschungsgruppe langfristig am Institut für Neuroinformatik zu etablieren, und hat durch diese Entscheidung im Vorfeld den Weg geebnet, um dauerhaft die enge Verzahnung zwischen theoretischen und experimentellen Neurowissenschaften an der RUB zu fördern. Die Neurowissenschaften sind seit Jahren ein fachübergreifender Forschungsschwerpunkt in Bochum und eine der tragenden Säulen im Zukunftskonzept der RUB in der Exzellenzinitiative.

Weitere Informationen

Juniorprofessor Dr. Dirk Jancke, Kognitive Neurobiologie, Fakultät für Biologie der RUB, Tel. 0234/32-24369, E-Mail: jancke@neurobiologie.rub.de

Bernstein-Gruppe: http://www.computational-neuroscience-bochum.de
Unsichtbares sichtbar gemacht: http://www.pm.rub.de/pm2004/msg00094.htm

Dr. Josef König | idw
Weitere Informationen:
http://www.computational-neuroscience-bochum.de
http://www.pm.rub.de/pm2004/msg00094.htm

Weitere Berichte zu: Felddynamik Nervenzelle Population RUB

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Wie ein Roboter Kita-Kindern Sprachen beibringt
14.07.2017 | Universität Bielefeld

nachricht MINT Nachwuchsbarometer 2017: Digitale Bildung in Deutschland braucht ein Update
22.06.2017 | acatech - Deutsche Akademie der Technikwissenschaften

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie