Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn bei der Arbeit zusehen: Neue "Bernstein-Gruppe" an der RUB

23.04.2007
BMBF fördert Forschung in "Computational Neuroscience"

In jeder Millisekunde sind im Gehirn Millionen von Nervenzellen aktiv, um den fortwährenden Informationsstrom aus der Außenwelt über Sensoren mit Prozessen der neuronalen Innenwelt zu verbinden. Wie diese hochdynamischen Prozesse ablaufen und funktionieren, untersuchen die Bochumer Neurowissenschaftler Professor Gregor Schöner, Juniorprofessor Dirk Jancke und Juniorprofessor Christian Igel. Seit März fördert das Bundesministerium für Bildung und Forschung (BMBF) dieses Projekt als "Bernstein-Gruppe" mit rund 1 Million Euro für zunächst drei Jahre. Die Bochumer Forscher sind damit Teil des nationalen Netzwerkes "Computational Neuroscience".

Theorie mit neuen experimentellen Ansätzen verbinden

Ziel des Netzwerkes ist es, die fachübergreifende Forschungsrichtung "Computational Neuroscience" in Deutschland zu stärken, um die neuronalen Grundlagen von Hirnleistungen zu verstehen - von der Verarbeitung von Sinnesreizen über Lernen bis zur kognitiven Verhaltensplanung. Die Bochumer Bernstein-Gruppe nutzt die rasant gestiegenen technischen Möglichkeiten, um komplexe Netzwerkdynamiken zu simulieren, und verbindet dies mit neuen bildgebenden Verfahren zur Darstellung von Gehirnaktivität. In den nächsten Jahren entwickeln die Forscher sowohl theoretische Modelle als auch experimentelle Ansätze zum Verständnis des Gehirns.

... mehr zu:
»Felddynamik »Nervenzelle »Population »RUB

Das Gehirn als dynamisches System

Langfristig setzt sich die Bernstein-Gruppe zum Ziel, durch ein eng verzahntes theoretisches und experimentelles Forschungsprogramm die Entstehung höherer Hirnfunktionen zu verstehen. Sie resultieren aus der kontinuierlichen neuronalen Dynamik von Nervennetzen, die Sensorik und Motorik verknüpfen und sich erfahrungsabhängig ändern. Die neuronalen Aktivitäten verlaufen innerhalb komplexer Architekturen, in denen Nervenzellen hochgradig vernetzt sind. Wie das Gehirn die Verarbeitungsprozesse autonom und stabil bewerkstelligt, ist eines der großen Rätsel neurobiologischer Forschung. Jun. Professor Jancke nutzt zur Visualisierung sich rasch ändernder Aktivitätsmuster im Gehirn ein neues optisches Verfahren. Mit Hilfe fluoreszenter Farbstoffe, deren Moleküle sich in die Membranen von Nervenzellen verankern, werden Aktivitätsänderungen durch Lichtsignale sichtbar. Die optische Messapparatur gestattet dabei den gleichzeitigen Blick auf größere Gehirnflächen. So lassen sich in Echtzeit neuronale Prozesse über weitreichende Netzwerkstrukturen erfassen.

Weitverzweigte Netzwerke

Einzelne Neurone vermitteln dabei nur wenige Informationen über die zugrundeliegenden Verarbeitungsprozesse. Vielmehr sind Nervenzellen in weitverzweigten Netzwerken organisiert, die in ihrer Gesamtheit stetig wechselnde Zustände generieren. Die Bochumer Wissenschaftler gehen davon aus, dass sich die komplexe Dynamik solcher Vorgänge durch Wechselwirkungen innerhalb neuronaler Populationen beschreiben lässt.

Neuronale Felder

Mathematisch kann man diese Form der Repräsentation von Information durch neuronale Populationen mit dem Begriff des "neuronalen Feldes" erfassen. So wie in der Physik das elektrische Feld jedem Raumpunkt eine Größe zuordnet, aus der die Kraft auf eine elektrische Ladung abgeleitet werden kann, so ordnet das neuronale Feld jedem möglichen Stimulus eine Größe - die Aktivierung - zu. Die zeitliche Entwicklung der Populationsaktivität modellieren die Wissenschaftler mit Differenzialgleichungen, den Felddynamiken. Sensorische Eingänge, aber auch Wechselwirkungen innerhalb der neuronalen Population tragen zur Felddynamik bei. Professor Schöner nutzt diesen theoretischen Rahmen, um zu verstehen, wie sich Menschen aus dem Fluss der visuellen Information ein Bild der Umwelt machen. Die Identifikation solcher Felddynamiken aus experimentellen Daten und Vorhersage von neuronalen Antworten auf neue Reize sind Gegenstand der Arbeiten von Juniorprofessor Igel. Die Bernstein-Gruppe legt ihren Schwerpunkt dabei auf Modelle der frühen visuellen Verarbeitung und der Beschreibung und Analyse von Lernprozessen in neuronalen Feldern.

Forschungskapazitäten bündeln

Das Rektorat der Ruhr-Universität plant, die interdisziplinär arbeitende Forschungsgruppe langfristig am Institut für Neuroinformatik zu etablieren, und hat durch diese Entscheidung im Vorfeld den Weg geebnet, um dauerhaft die enge Verzahnung zwischen theoretischen und experimentellen Neurowissenschaften an der RUB zu fördern. Die Neurowissenschaften sind seit Jahren ein fachübergreifender Forschungsschwerpunkt in Bochum und eine der tragenden Säulen im Zukunftskonzept der RUB in der Exzellenzinitiative.

Weitere Informationen

Juniorprofessor Dr. Dirk Jancke, Kognitive Neurobiologie, Fakultät für Biologie der RUB, Tel. 0234/32-24369, E-Mail: jancke@neurobiologie.rub.de

Bernstein-Gruppe: http://www.computational-neuroscience-bochum.de
Unsichtbares sichtbar gemacht: http://www.pm.rub.de/pm2004/msg00094.htm

Dr. Josef König | idw
Weitere Informationen:
http://www.computational-neuroscience-bochum.de
http://www.pm.rub.de/pm2004/msg00094.htm

Weitere Berichte zu: Felddynamik Nervenzelle Population RUB

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen
22.09.2017 | Westfälische Wilhelms-Universität Münster

nachricht Meilenstein in der Forschung: Enabling Innovation
06.09.2017 | Rheinische Fachhochschule Köln

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie