Festkörperphysiker der Universität Jena erhalten neuen Spezialkryostaten für Gütemessungen

Laborleiter Dr. Sandor Nietzsche überprüft im neuen Speziallabor der Uni Jena die Justierung einer hochreinen Quarzglas-Probe zur Gütemessung. <br>Foto: Scheere/FSU-Fotozentrum

Gerade mal ein halbes Jahr ist seit der Einweihung des neu errichteten „Gütelabors“ am Institut für Festkörperphysik der Universität Jena vergangen. In diesem Speziallabor können hochgenaue Messungen mechanischer Güten durchgeführt werden, ab Januar sogar bei extrem tiefen (kryogenen) Temperaturen. Dann wird – nach rund 1,5-jähriger Konstruktions- und Bauzeit – ein Spezialkryostat in Betrieb gehen. Mit diesem Unikat können die Proben für die Gütemessungen auf Temperaturen bis hinab zu 4,2 Kelvin (-269 °C) gekühlt werden.

Doch bereits ohne das neue Kühlaggregat ist es dem Team um Prof. Dr. Paul Seidel im neuen Labor gelungen, mit aktuellen Messergebnissen internationale Aufmerksamkeit zu erlangen. Nun wird alles daran gesetzt, die weltweit höchsten Gütewerte noch zu überbieten. „Einzigartige Voraussetzungen dafür sind gegeben – angefangen bei den hervorragenden baulichen Eigenschaften des Labors mit eigenem 20-Tonnen-Anlagenfundament über die moderne Messtechnik bis hin zur unmittelbaren Anbindung an den Tieftemperaturservice der Physikalisch-Astronomischen Fakultät, der das Labor mit flüssigem Helium als Kältemittel versorgt“, betont Prof. Seidel. „Ähnliche Versuchsbedingungen für Gütemessungen sind weltweit nur noch an dem japanischen ,Institute for Cosmic Ray Research’ in Tokio erreichbar“, erläutert Arbeitsgruppenleiter Seidel.

Die mechanische Güte kennzeichnet die inneren Dämpfungsverluste im Festkörper und äußert sich z. B. in der Nachklingzeit einer einmal angeregten Schwingung. „Gütewerte von über 100 Millionen, wie sie im Speziallabor angestrebt sind, würden – bezogen auf die kürzlich reparierte Glocke des Erfurter Domes „Gloriosa“ – bedeuten, dass ihr berühmter Klang noch drei Tage nach dem Läuten zu hören wäre“, verdeutlicht Laborleiter Dr. Sandor Nietzsche.

Die Arbeiten im Kryolabor sind Bestandteil des 2003 an der Friedrich-Schiller-Universität eingerichteten transregionalen Sonderforschungsbereiches „Gravitationswellenastronomie“. Dieser hat sich das Ziel gestellt, erstmals die von Einstein vorhergesagten Gravitationswellen direkt nachzuweisen und zu interpretieren. Dadurch wären die Grundlagen für eine völlig neue Methode der Astronomie gegeben, die es ermöglicht, kosmische Objekte, z. B. Schwarze Löcher, Pulsare, verschmelzende Neutronensternpaare oder Supernovae, zu untersuchen. Die Beobachtung dieser sehr weit entfernten Objekte anhand von Gravitationswellen gestattet auch einen Blick zurück in die Zeit bis nahe an den Urknall und ermöglicht so ein weitaus tieferes Verständnis für die Entstehung und Entwicklung unseres Universums.

Kontakt:

Dr. Sandor Nietzsche
Institut für Festkörperphysik der Universität Jena
Helmholtzweg 5, 07743 Jena
Tel.: 03641 / 947424
E-Mail: Sandor.Nietzsche@uni-jena.de

Media Contact

Axel Burchardt idw

Weitere Informationen:

http://www.physik.uni-jena.de/~cryoq

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer