Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entwickeln lernendes Fahrerassistenz-System

23.09.2009
Wenn Autos zur Fahrschule gehen

Vorausschauend fahren ist der Schlüssel zur Sicherheit, heißt es in der Fahrschule. Dies ist aber vor allem dann besonders schwierig, wenn es dunkel ist und man wenig sieht.

Im Rahmen des EU-geförderten Projektes "DRIVSCO" haben Wissenschaftler ein Fahrerassistenz-System entwickelt, das Abhilfe leisten kann. Das System lernt tagsüber vom Fahrer und wendet diese Kenntnisse nachts an, wenn es mit seinem Infrarotsystem weiter sehen kann als das menschliche Auge. Das EU-Projekt wurde koordiniert von Prof. Dr. Florentin Wörgötter, Wissenschaftler am Bernstein Zentrum für Computational Neuroscience und an der Universität Göttingen.

Acht weitere Partner aus sechs europäischen Ländern waren darüber hinaus an dem Forschungsvorhaben beteiligt. Der erfolgreiche Abschluss des Projektes manifestiert sich in einem ersten Prototyp des Fahrerassistenz-Systems, der von dem Unternehmen Hella Hueck in ein Versuchsfahrzeug eingebaut wurde.

DRIVSCO ist das erste Fahrerassistenz-System, das vom Fahrer lernt. Anhand der Fahrbahnbegrenzung erkennt es beispielsweise den Straßenverlauf. Es speichert diese Bilder und Straßendaten und vergleicht sie mit den Reaktionen des Fahrers: Wie stark bremst er, wenn eine Kurve eines bestimmten Winkels vor ihm liegt? Wie lenkt er? So lernt das System den individuellen Fahrstil eines Fahrers kennen. Nachts nutzt es Infrarotscheinwerfer, um den Straßenverlauf zu erfassen - es sieht mehr als der Fahrer und weiß nun aus Erfahrung, wie der Fahrer in bestimmten Situationen reagieren müsste. Weicht der Fahrer zu stark von seinem Normalverhalten ab, da er zum Beispiel nachts eine Kurve nicht erkennt, wird er vom System gewarnt. Neben den Infrarotscheinwerfern verfügt das Fahrerassistenz-System außerdem über ein Stereokamera-System, mit dem es andere Fahrzeuge wahrnehmen, erkennen und den Abstand zu ihnen berechnen kann.

"Die wissenschaftliche Herausforderung bei der Entwicklung des Systems war der Abgleich zwischen den Bilddaten und der Fahreraktion", erklärt Prof. Wörgötter. Bilder können sehr ähnlich sein und dennoch reagiert der Fahrer unterschiedlich. Das System muss lernen, auf welche Bildaspekte es ankommt und welche Reaktion darauf folgt - es zieht damit auch den Fahrstil unterschiedlicher Fahrer in Betracht. "Systeme, die erkennen, wenn das Fahrzeug den Abstand zur Linie am Fahrbahnrand ändert, gibt es schon. Unser System aber arbeitet vorausschauend und plant das Fahrverhalten auch für den weiter entfernten Straßenverlauf", so Prof. Wörgötter.

Das Projekt "DRIVSCO" wurde mit rund 2,8 Millionen Euro über einen Zeitraum von dreieinhalb Jahren durch die Europäische Union gefördert. Projektpartner sind Universitäten in Leuven (Belgien), Genua (Italien), Granada (Spanien), Münster, Kaunas (Litauen) und Odense (Dänemark) sowie die Hella KGaA Hueck & Co, Lippstadt.

Kontaktadresse:
Prof. Dr. Florentin Wörgötter
Georg-August-Universität Göttingen, III. Physikalisches Institut - Biophysik
Bernstein Center for Computational Neuroscience, Department for Computational Neuroscience

Telefon (0551) 39-10760, E-Mail: worgott@bccn-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.bccn-goettingen.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht RFID-Technologie: Digitalisierung in der Automobilproduktion
02.01.2018 | Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

nachricht Wenn dein Auto weiß, wie du dich fühlst
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics