Textilien in der Automobilproduktion: Leichtbau mit großem Gewicht

Flechtring einer Umflechtmaschine zur Herstellung von Preforms (textile Vorformlinge) u. a. für rohrförmige PKW-Bauteile (Quelle: ITA, RWTH bzw. ITV Denkendorf)<br>

BMW, Daimler, VW & Co. stehen mit der Einführung der Elektromobilität ein beispielloser technologischer Paradigmenwechel bevor, bei dem faserbasierte Werkstoffe eine der Hauptrollen spielen.

Das in Berlin ansässige Forschungskuratorium Textil (FKT), Koordinator von 16 Textilforschungsinstituten in Bremen, NRW, Baden-Württemberg, Thüringen und Sachsen, benennt die Einsatzstrategien: „Textilforschung ist heute eine Materialwissenschaft“, so FKT-Geschäftsführer Dr. Klaus Jansen. „Faserbasierte Werkstoffe ergänzen und ersetzen Holz, Kunststoff, Metall oder Glas und sind aus dem Automobil nicht mehr wegzudenken.“ In den letzten Jahren habe sich die Textilbranche intensiv mit der Automobilbranche vernetzt und sei für diese ein unersetzbarer Partner geworden. Schon heute erwirtschaften rd. 50 mittelständische Textilunternehmen im Segment Fahrzeugbau-Zulieferindustrie mit gut 10.000 Mitarbeitern einen Umsatz von jährlich gut vier Mrd. Euro, bilanziert das FKT (www.textilforschung.de).

Wer Elektroautos produzieren will, muss die gesamte Wertschöpfungskette „Auto“ auf den Prüfstand stellen. Denn allein mit dem Austausch der Antriebssysteme ist es nicht getan. So paradox es klingt: Neben der Verbesserung von Batterien, Motoren sowie hybriden Antrieben wird der Leichtbau bei der Massenproduktion von Stromern die „gewichtigste“ Rolle spielen – nicht zuletzt dank superleichter und hochfester Hightech-Textilien. Kohlefaserverstärkte Hochleistungskunststoffe sind in der Luft- und Raumfahrt, bei Windrotoren oder Luxus-Sportwagen längst etabliert. Der hohe Anteil an manueller Fertigung sowie die langen „Back“-zeiten des vergossenen Kunstharzes machen sie jedoch viel zu teuer – ein Grund, warum derzeit von einer industriellen Serienanwendung im Automotive-Bereich noch keine Rede ist.

Vorgefertigte Komponenten nach Maß

Wissenschaftseinrichtungen wie das Institut für Textiltechnik (ITA) der RWTH Aachen oder das Institut für Textilmaschinen und Textile HochIeistungswerkstofftechik (ITM) der TU Dresden arbeiten in enger Abstimmung mit Textilunternehmen und Autoherstellern jedoch daran, die Prozessschritte zu automatisieren und damit wirtschaftlicher zu gestalten. In Anlehnung an in der Autoproduktion genutzten „Tailored Blanks“, passgenauen Platinen aus Stahlblech, fertigt das ITA „Tailored NCF“: maßgeschneiderte Gelege, die unterschiedliche Dicken und Eigenschaften in einem einzigen Textil aufweisen. „Tailored Braids“ hingegen, die in einem automatisieren Umflechtverfahren entstehen, sind die Entsprechung zu den „Tailored Tubes“ (rohrförmige Bauteile mit verschiedenen Geometrien) im Fahrzeugbau. Die Strukturbauteile aus Kohlenstofffasern dienen als Fahrzeugunterböden oder Karosserieverkleidungen (Tailored NCF) ebenso wie als A-Säule, B-Säule oder Seitenschweller (Tailored Braids).

Mit seinem Preform-Center verfügt das Institut zusätzlich über eine Musteranlage, die im Kleinen einen Blick in die Autofabrik der Zukunft gewährt: Sie integriert alle relevanten Prozessschritte der automatisierten Herstellung textiler dreidimensionaler „Vorformlinge“ aus Textilfasern – Handhabung, Zuschnitt, Fügen. „Neben einem CNC-Zuschneidtisch verfügt die Innovation über einen 6-Achs-Knickarmroboter, und mithilfe eines Schnellwechselsystems können die Bearbeitungsköpfe vollautomatisch an den Roboter gekoppelt werden“, so ITA-Mitarbeiterin Britta Sköck-Hartmann. Die Qualitätssicherung erfolge durch Online-Messtechnik und digitale Bildverarbeitung.

Prof. Cherif: Mindestens noch zehn Jahre bis zu Großserien

Das ITM in Dresden koordiniert zu diesem Thema einen durch das Bundeswirtschaftsministerium und die Deutsche Forschungsgesellschaft geförderten Cluster. Der Verbund „Leichtbau und Textilien“ bündelt elf Vorhaben aus zehn deutschen Forschungseinrichtungen der Bereiche Textiltechnik, Textilmaschinenbau, Leichtbau, Kunststofftechnik, Fügetechnik und Polymerwerkstoffforschung. Institutsdirektor Prof. Dr.-Ing. Chokri Cherif weiß: „Konsequenter Leichtbau im Multi-Material-Design ist notwendig zur Reduzierung des Fahrzeuggewichts und somit des Verbrauchs.“ Textilbasierte Faserverbund-Werkstoffe seien hierfür unverzichtbar.

Ziel sei die serielle Herstellung „endkonturnaher“ und hochfester, mit innovativen Flecht-, Wirk- oder Webverfahren hergestellter Textilstrukturen. Diese Faserverbundbauteile sollen in tragenden Komponenten von Fahrzeugen (Fahrgastzelle), Verblendungsteilen (Kotflügel, Cabriodach) oder als Verstärkung bestehender Konstruktionen (Seitenaufprallschutz, Bodengruppenverstärkung, Crashabsorber im Frontbereich) zum Einsatz kommen.

BMW demnächst mit Fahrgastzelle aus Karbon

Wohin die „Technikreise“ geht, zeigt das Mega City Vehicle von BMW: Das Stadt-E-Mobil i3, es soll 2013 auf den Markt kommen, besitzt zwei völlig neu konstruierte Haupt-Funktionseinheiten: Das „Drive-Modul“ mit Elektromotor und Lithium-Ionen-Akkus ist aus Aluminium gefertigt und sitzt im Wagenboden. Die Fahrgastzelle, das „Life-Modul“, besteht komplett aus Karbon. So bringt der Stromer nur 1.250 kg auf die Waage, das durch den E-Antrieb bewirkte zusätzliche Gewicht wird mehr als ausgeglichen.

Die Forschungszentren sehen sich damit vor neue Aufgaben gestellt: Um das Anforderungsprofil der Autoindustrie zu erfüllen, müsse die Materialentwicklung mit der Erarbeitung zuverlässiger Simulationstools, neuartiger Reparaturlösungen sowie überzeugender Recyclingkonzepte einhergehen, so ITM-Chef Prof. Cherif. „Mit der Fertigung in Großserie ist in 10-15 Jahren zu rechnen.“

Leucht- und andere Hightech-Textilien im Auto

Doch schon jetzt vollziehen sich auf breiter Front in die Zukunft gerichtete FuE-Aktivitäten der „Textiler“ – vom Aufprallschutz für Fußgänger in der textilen Motorhaube, passiven und aktiven Leuchteffekten (Leuchthimmel, Schlossmulden, Verkleidungen), textilen Schaltern, intelligenten, mit Sensoren bestückten Sitzen, die Puls, Temperatur oder Ermüdungszustand des Fahrers messen, bis hin zu Fehlerdiagnosesystemen in der Bereifung. Das Institut für Textil- und Verfahrenstechnik ITV Denkendorf nimmt sich die Natur zum Vorbild: Aus bionischer Sicht (Bionik = Biologie und Technik) wird versucht, Wirkprinzipien aus Flora und Fauna auf Textil zu übertragen. So stellte das Institut seine Technik zur Verfügung, um erstmalig einen „textilen Pflanzenhalm“ zu realisieren – nach dem Prinzip, das hochelastische und superleichte Material nur dort einzusetzen, wo es gebraucht wird.

Noch einen Schritt weiter geht das ITCF Institut für Textilchemie und Chemiefasern, ebenfalls Denkendorf: Hier arbeiten die Chemiker an selbstheilenden Verbundkomponenten, analog zur Heilung von Knochenbrüchen. Nach einem Aufprall „repariert“ das Bauteil einen Riss quasi selbst. Noch in den Kinderschuhen steckt die Faserverstärkung von Metallen, wie z. B. keramikfaserverstärktes Aluminium aus Aachen – ein leichter Werkstoff mit hoher Zähigkeit, der sich z. B. für Bauteile im Verbrennungsmotor eignen könnte.

Media Contact

Innomedia

Weitere Informationen:

http://www.textilforschung.de

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer