Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Progressive optics for side mirrors ends automobile blind spots without distorting view

29.01.2013
A new optical prescription for automobile side-view mirrors may eliminate the dreaded "blind spot" in traffic without distorting the perceived distance of cars approaching from behind. As described in a paper published today in the Optical Society's (OSA) journal Optics Letters, objects viewed in a mirror using the new design appear larger than in traditional side-view mirrors, so it's easier to judge their following distance and speed.

Today's motor vehicles in the United States use two different types of mirrors for the driver and passenger sides. The driver's side mirror is flat so that objects viewed in it are undistorted and not optically reduced in size, allowing the operator to accurately judge an approaching-from-behind vehicle's separation distance and speed. Unfortunately, the optics of a flat mirror also create a blind spot, an area of limited vision around a vehicle that often leads to collisions during merges, lane changes, or turns.


These images illustrate the performance between the aspheric and progressive mirror (top) and the flat and progressive mirror (bottom). In (a), the standard aspheric mirror is shown with a blue line to indicate the boundary between the two zones. This illustrates the distortion between the two zones. In (b), the progressive prescription developed by the researchers demonstrates the improved transition between zones, eliminating the blind spot while still giving an undistorted view of objects at a distance. (c) This is the standard flat side view mirror compared with (d) the wider field of view of the progressive mirror.

Credit: Credit: Optics Letters.

The passenger side mirror, on the other hand, possesses a spherical convex shape. While the small radius of curvature widens the field of view, it also causes any object seen in it to look smaller in size and farther away than it actually is. Because of this issue, passenger side mirrors on cars and trucks in the United States must be engraved with the safety warning, "Objects in mirror are closer than they appear." In the European Union, both driver and passenger side mirrors are aspheric (One that bulges more to one side than the other, creating two zones on the same mirror).

The inner zone—the section nearest the door—has a nearly perfect spherical shape, while the outer zone— the section farthest from the door—becomes less and less curved toward the edges. The outer zone of this aspheric design also produces a similar distance and size distortion seen in spherical convex designs.

In an attempt to remedy this problem, some automotive manufacturers have installed a separate, small wide-angle mirror in the upper corner of side mirrors. This is a slightly domed square that provides a wide-angle view similar to a camera's fisheye lens. However, drivers often find this system to be a distracting as well as expensive addition.

A simpler design for a mirror that would be free of blind spots, have a wide field of view, and produce images that are accurately scaled to the true size of an approaching object—and work for both sides of a vehicle—has been proposed by researchers Hocheol Lee and Dohyun Kim at Hanbat National University in Korea and Sung Yi at Portland State University in Oregon. Their solution was to turn to a progressive additive optics technology commonly used in "no-line multifocal" eyeglasses that simultaneously corrects myopia (nearsightedness) and presbyopia (reduced focusing ability).

"Like multifocal glasses that give the wearer a range of focusing abilities from near to far and everything in between, our progressive mirror consists of three resolution zones: one for distance vision, one for close-up viewing and a middle zone making the transition between the two," says Lee. "However, unlike glasses where the range of focus is vertically stacked [from distance viewing on top to close-up viewing on bottom], our mirror surface is horizontally progressive."

Lee says that a driver's side mirror manufactured with his team's new design would feature a curvature where the inner zone is for distance viewing and the outer zone is for near-field viewing to compensate for what otherwise would be blind spots. "The image of a vehicle approaching from behind would only be reduced in the progressive zone in the center," Lee says, "while the image sizes in the inner and outer zones are not changed."

The horizontal progressive mirror, Lee says, does have some problems with binocular disparity (the slight difference between the viewpoints of a person's two eyes) and astigmatism (blurring of a viewed image due to the difference between the focusing power in the horizontal and vertical directions). These minor errors are a positive trade off, the researchers feel, to gain a mirror with a greatly expanded field of view, more reliable depth perception, and no blind spot.

To prove the merits of their design, the researchers used a conventional glass molding process to manufacture a prototype horizontal progressive mirror. They were able to produce a mirror with more than double the field of view of a traditional flat mirror.

Other wide-angle designs have also been proposed, but the new design described today in the Optics Letters paper offers a particularly easy-to-manufacture approach to the problem of blind spots by seamlessly integrating just three zones.

The researchers claim that the manufacturing cost of their proposed mirror design would be cheaper than the mirror design with the added small wide-angle viewing section. Since mirror designs are stipulated by national automobile regulations, the new design would need to be approved for use in the United States before appearing on cars here.

Paper: "Horizontally progressive mirror for blind spot detection in automobiles," H. Lee, D. Kim, S. Yi, Optics Letters, Vol. 38, Issue 3, pp. 317 – 319 (2013).

EDITOR'S NOTE: An image and video clip of the new mirror are available to members of the media upon request. Contact Brielle Day.

About Optics Letters

Published by the Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Alan E. Willner of the University of Southern California and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.

About OSA

Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Brielle Day | EurekAlert!
Further information:
http://www.osa.org

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie