Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Progressive optics for side mirrors ends automobile blind spots without distorting view

A new optical prescription for automobile side-view mirrors may eliminate the dreaded "blind spot" in traffic without distorting the perceived distance of cars approaching from behind. As described in a paper published today in the Optical Society's (OSA) journal Optics Letters, objects viewed in a mirror using the new design appear larger than in traditional side-view mirrors, so it's easier to judge their following distance and speed.

Today's motor vehicles in the United States use two different types of mirrors for the driver and passenger sides. The driver's side mirror is flat so that objects viewed in it are undistorted and not optically reduced in size, allowing the operator to accurately judge an approaching-from-behind vehicle's separation distance and speed. Unfortunately, the optics of a flat mirror also create a blind spot, an area of limited vision around a vehicle that often leads to collisions during merges, lane changes, or turns.

These images illustrate the performance between the aspheric and progressive mirror (top) and the flat and progressive mirror (bottom). In (a), the standard aspheric mirror is shown with a blue line to indicate the boundary between the two zones. This illustrates the distortion between the two zones. In (b), the progressive prescription developed by the researchers demonstrates the improved transition between zones, eliminating the blind spot while still giving an undistorted view of objects at a distance. (c) This is the standard flat side view mirror compared with (d) the wider field of view of the progressive mirror.

Credit: Credit: Optics Letters.

The passenger side mirror, on the other hand, possesses a spherical convex shape. While the small radius of curvature widens the field of view, it also causes any object seen in it to look smaller in size and farther away than it actually is. Because of this issue, passenger side mirrors on cars and trucks in the United States must be engraved with the safety warning, "Objects in mirror are closer than they appear." In the European Union, both driver and passenger side mirrors are aspheric (One that bulges more to one side than the other, creating two zones on the same mirror).

The inner zone—the section nearest the door—has a nearly perfect spherical shape, while the outer zone— the section farthest from the door—becomes less and less curved toward the edges. The outer zone of this aspheric design also produces a similar distance and size distortion seen in spherical convex designs.

In an attempt to remedy this problem, some automotive manufacturers have installed a separate, small wide-angle mirror in the upper corner of side mirrors. This is a slightly domed square that provides a wide-angle view similar to a camera's fisheye lens. However, drivers often find this system to be a distracting as well as expensive addition.

A simpler design for a mirror that would be free of blind spots, have a wide field of view, and produce images that are accurately scaled to the true size of an approaching object—and work for both sides of a vehicle—has been proposed by researchers Hocheol Lee and Dohyun Kim at Hanbat National University in Korea and Sung Yi at Portland State University in Oregon. Their solution was to turn to a progressive additive optics technology commonly used in "no-line multifocal" eyeglasses that simultaneously corrects myopia (nearsightedness) and presbyopia (reduced focusing ability).

"Like multifocal glasses that give the wearer a range of focusing abilities from near to far and everything in between, our progressive mirror consists of three resolution zones: one for distance vision, one for close-up viewing and a middle zone making the transition between the two," says Lee. "However, unlike glasses where the range of focus is vertically stacked [from distance viewing on top to close-up viewing on bottom], our mirror surface is horizontally progressive."

Lee says that a driver's side mirror manufactured with his team's new design would feature a curvature where the inner zone is for distance viewing and the outer zone is for near-field viewing to compensate for what otherwise would be blind spots. "The image of a vehicle approaching from behind would only be reduced in the progressive zone in the center," Lee says, "while the image sizes in the inner and outer zones are not changed."

The horizontal progressive mirror, Lee says, does have some problems with binocular disparity (the slight difference between the viewpoints of a person's two eyes) and astigmatism (blurring of a viewed image due to the difference between the focusing power in the horizontal and vertical directions). These minor errors are a positive trade off, the researchers feel, to gain a mirror with a greatly expanded field of view, more reliable depth perception, and no blind spot.

To prove the merits of their design, the researchers used a conventional glass molding process to manufacture a prototype horizontal progressive mirror. They were able to produce a mirror with more than double the field of view of a traditional flat mirror.

Other wide-angle designs have also been proposed, but the new design described today in the Optics Letters paper offers a particularly easy-to-manufacture approach to the problem of blind spots by seamlessly integrating just three zones.

The researchers claim that the manufacturing cost of their proposed mirror design would be cheaper than the mirror design with the added small wide-angle viewing section. Since mirror designs are stipulated by national automobile regulations, the new design would need to be approved for use in the United States before appearing on cars here.

Paper: "Horizontally progressive mirror for blind spot detection in automobiles," H. Lee, D. Kim, S. Yi, Optics Letters, Vol. 38, Issue 3, pp. 317 – 319 (2013).

EDITOR'S NOTE: An image and video clip of the new mirror are available to members of the media upon request. Contact Brielle Day.

About Optics Letters

Published by the Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Alan E. Willner of the University of Southern California and published twice each month, is where readers look for the latest discoveries in optics. Visit

About OSA

Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Brielle Day | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht The Drive for Digital Cars
24.09.2015 | Siemens AG

nachricht International training concept on technical cleanliness inspection
15.09.2015 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Sinumerik-Funktionen steigern Produktivität und Genauigkeit

EMO 2015, Halle 3, Stand E06/F03

  • Antriebsoptimierung aus Teileprogramm ermöglicht höhere Produktivität
  • Automatische Umschaltung der Dynamikwerte für Eilgang und Bearbeitung steigert Qualität...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH zeigt additive Fertigung auf der LABVOLUTION

Das Laser Zentrum Hannover e.V. (LZH) zeigt vom 6. bis zum 8. Oktober 2015 auf der LABVOLUTION in Hannover in Halle 9, Stand E67/09 wie laserbasierte Technologien zum Labor der Zukunft beitragen können. Als Teil des Musterlabors smartLAB präsentiert das LZH, wie die additive Fertigung, besser bekannt als 3D-Druck, Versuchsaufbauten flexibler gestalten kann.

Zwölf Partner aus Wissenschaft und Industrie stellen auf der Sonderausstellung smartLAB ein intelligentes und innovatives Musterlabor vor. Teil dieses...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Batterietagung im April 2016 in Münster

02.10.2015 | Veranstaltungen

EEHE 2016 – Call for Papers endet am 28.10.2015!

02.10.2015 | Veranstaltungen

HDT-Tagung: 16. Essener Brandschutztage

01.10.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Sinumerik-Funktionen steigern Produktivität und Genauigkeit

02.10.2015 | Messenachrichten

Exklusives Design für die Raumbedienung mit den neuen KNX-Tastsensoren

02.10.2015 | Architektur Bauwesen

Schutz aus Glas gegen vielerlei Gefahren: Feuer, Beschuss, Vandalismus und UV-Strahlen

02.10.2015 | Materialwissenschaften