Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Platinreiche Schale, platinarmer Kern

24.10.2007
Neue Katalysatorklasse für Brennstoffzellen schlägt reines Platin um Längen

Wasserstoff-Brennstoffzellen gelten als Automobil-Antrieb der Zukunft, kranken bisher allerdings noch an mangelnder Konkurrenzfähigkeit. An der University of Houston (Texas, USA) hat ein Team um Peter Strasser jetzt eine neue Klasse von Elektrokatalysatoren entwickelt, die helfen könnte, die Leistung von Brennstoffzellen zu erhöhen. Die aktive Phase des Katalysators bilden Nanopartikel mit einer platinreichen Schale und einem Kern aus einer Kupfer-Cobalt-Platin-Legierung. Sie zeigt eine bisher unerreichte Aktivität bei der Reduktion von Sauerstoff.

Wasserstoff-Brennstoffzellen sind eine gezähmte Version der Knallgasreaktion, bei der Sauerstoff und Wasserstoff explosionsartig zu Wasser reagieren. Damit das Ganze sanft verläuft und die freiwerdende Energie in Form von Strom abgezapft werden kann, finden die Reaktionen der beiden Reaktionspartner in einer Brennstoffzelle als zwei räumlich getrennte Teilreaktionen statt. In der einen Halbzelle nimmt Sauerstoff an einer Elektrode Elektronen auf (Reduktion), in der anderen gibt Wasserstoff Elektronen ab (Oxidation). Die Zellen sind durch Polymerelektrolyt-Membranen verbunden, über die der Stoffaustausch läuft.

Damit die Reaktion laufen kann, müssen die Elektroden katalytisch wirken. Material der Wahl für die Elektrode der Sauerstoff-Teilreaktion ist seit Jahrzehnten das Edelmetall Platin. Nun haben Strasser und sein Team ein neues Material entwickelt: Eine Legierung aus Platin, Kupfer und Cobalt, die in Form von Nanopartikeln auf Trägern aus Kohlenstoff aufgebracht ist. Die eigentliche katalytisch aktive Phase entsteht erst in situ: Wird eine zyklisch wechselnde Spannung an die Elektrode angelegt, lösen sich an der Oberfläche der Nanopartikel selektiv die weniger edlen Metallatome, vor allem Kupfer, aus der Legierung heraus. So entstehen Nanopartikel mit einem Kern aus der ursprünglichen kupferreichen Legierung und einer fast nur Platin enthaltenden Schale.

"Die sauerstoffreduzierende Aktivität unseres neuen elektrokatalytischen Nanomaterials ist bisher unerreicht - etwa vier- bis fünfmal höher als beim reinen Platin. Zudem konnten wir zeigen, wie man dieses Material in einer richtigen Brennstoffzelle in situ einsetzt und aktiviert," sagt Strasser. Die beobachtete Oberflächenzunahme der Nanopartikel reicht als Erklärung nicht aus. Strasser vermutet, dass spezielle veränderte strukturelle Charakteristika der Oberfläche eine Rolle spielen. Obwohl die Partikeloberfläche hauptsächlich aus Platin besteht, scheinen die Abstände zwischen den Platinatomen hier kürzer zu sein als bei reinem Platin. Diese Stauchung kann durch den Legierungskern stabilisiert werden, der aufgrund des Kupfers und Cobalts noch stärker verkürzte Platin-Abstände zeigt. Zudem scheint der kupferreiche Kern die elektronischen Eigenschaften der Platinschale zu beeinflussen. Theoretische Betrachtungen haben ergeben, dass der Sauerstoff so optimal an die Partikeloberfläche binden kann und sich leichter reduzieren lässt.

Angewandte Chemie: Presseinfo 41/2007
Autor: Peter Strasser, University of Houston (USA), http://www.chee.uh.edu/faculty/strasser/
Angewandte Chemie, doi: 10.1002/ange.200703331
Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.chee.uh.edu/faculty/strasser/
http://presse.angewandte.de

Weitere Berichte zu: Brennstoffzelle Nanopartikel Platin Sauerstoff

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise