Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Fahrzeugantriebe entwickeln

01.10.2014

Automotoren, sei es mit Benzin, Diesel oder Strom betrieben, verpuffen viel Energie. Forscher arbeiten daran, diese Verschwendung einzudämmen. Moderne Prüfeinrichtungen helfen ihnen dabei, den gesamten Entwicklungsprozess der Motoren zu optimieren. Im Labor haben sie den Wirkungsgrad bereits um bis zu 10 Prozent erhöht.

Lkw, Pkw und Motorräder sind Energieverschwender: Über 60 Prozent der in ihren Motoren durch den Kraftstoff erzeugten Energie gehen über das Abgas und das Kühlwasser verloren. Der größte Teil davon verpufft einfach als Wärme in die Umgebung. »Unter unseren Motorhauben wird Benzin, Diesel oder Strom verschwendet und über die Abgasanlage unnötig CO2 in die Luft gepumpt«, sagt Dr. Hans-Peter Kollmeier vom Fraunhofer-Institut für Chemische Technologie ICT in Karlsruhe.


An einem neuen Heißgasprüfstand testen die Forscher Restwärmenutzungssysteme und Turbolader. Ihr Ziel ist es, effizientere Antriebskonzepte für Pkw und Lkw zu entwickeln.

© Fraunhofer ICT

In der Projektgruppe »Neue Antriebssysteme« geht er den Ursachen für diese Verschwendung auf den Grund. Zusammen mit anderen Forschern entwickelt er effiziente Antriebskonzepte für Fahrzeuge. Im Labor haben sie es bereits geschafft, den Wirkungsgrad von Pkw-Motoren um fünf und den von Nutzfahrzeugantrieben um bis zu zehn Prozent zu steigern.

Seit diesem Sommer stehen den Wissenschaftlern neue Prüfanlagen zur Verfügung. »Wir können am Standort Karlsruhe den gesamten Prozess der Antriebsentwicklung abbilden: von der Konstruktion, über die Simulation bis zum Versuch«, so Kollmeier. Ziel der Forscher ist es, die eingesetzten Technologien des Antriebsstranges so zu optimieren, dass die Kraftstoffersparnis optimal ist. Dafür muss man wissen, wie die einzelnen Komponenten in der Realität miteinander interagieren.

»Mit den neuen Prüfmöglichkeiten sind wir diesem Ziel einen großen Schritt näher gekommen. Wir haben dadurch die Möglichkeit, den Antriebsstrang ganzheitlich zu testen und unsere Simulationen zu validieren«, so Kollmeier.

Herzstück der neuen Testinfrastruktur ist ein Motoren- und ein Heißgasprüfstand. Dort werden Motoren und deren Komponenten mechanisch und thermodynamisch analysiert. Ein Computer steuert die Anlagen und simuliert realistische Anwendungsszenarien. Zum Beispiel kann der Rechner virtuell hybride Antriebe (z.B. Elektromotoren) oder Systeme, die Restwärme nutzen, dazuschalten.

Die Wissenschaftler analysieren, wie sich der Fahrzeugantrieb hinsichtlich Kraftstoffverbrauch und CO2-Emissionen verhält. Hierzu simuliert Kollmeiers Team Fahrzeugtyp, Fahrstrecke oder Fahrweise entsprechend. Sind genug Daten gesammelt, bauen die Forscher Prototypen und ersetzen dann peu à peu die Simulationsmodelle durch reale Bauteile in der Prüfeinrichtung. Schritt für Schritt nähern sie sich so dem optimalen Antriebsstrang. Immer wichtiger werden dabei besonders leichte Werkstoffe.

Wenn es darum geht, Automotoren effizienter zu machen, kommt schnell der Begriff »Downsizing« ins Spiel. Er steht ganz allgemein dafür, den Hubraum des Motors zu verringern, ohne dass dies seine Leistungsfähigkeit reduziert. Durch die verringerte Reibleistung und den verbesserten thermodynamischen Prozess können dadurch Kraftstoffverbrauch und CO2-Emissionen reduziert werden. In der Regel kommen in Downsizing-Konzepten Turbolader zum Einsatz, die in den Ansaug- und Abgastrakt integriert werden.

Diese schneckenförmigen, bei Pkw etwa 15 Zentimeter großen, Bauteile saugen Luft an und drücken diese in den Verbrennungsmotor hinein. So wird dem Motor mehr Frischluft zugeführt, wodurch pro Volumeneinheit eine größere Menge Kraftstoff verbrannt werden kann. Aufgrund des dadurch erzielten höheren Zylinderdrucks wird dann für den gleichen Hubraum eine höhere Motorleistung erzielt.

Angetrieben wird der Turbolader von den Abgasen des Fahrzeugs. Am Heißgasprüfstand testen die Wissenschaftler ihre Turbolader. In dieser Anlage wird durch einen Erdgasbrenner ein bestimmter Abgasmassenstrom generiert, der dem eines Verbrennungsmotors entspricht. Der Brenner lässt sich sehr exakt einstellen, um zu analysieren, wie sich kleinste Veränderungen der Randbedingungen auf den Turbolader auswirken.

»Der Turbolader ist der klassische Ansatz, den Wirkungsgrad von Motoren zu verbessern. Man nutzt einen Teil der Energie, der über die Abgase verpufft. Aber ihm sind Grenzen gesetzt. Dampfkreisprozesse können hier beispielsweise weiterhelfen«, sagt Kollmeiers Kollege Dr. Sascha Merkel. Hierbei wird ein flüssiges Arbeitsmedium (z.B. Wasser oder Ethanol) durch die Restwärme erhitzt.

Es verdampft und treibt eine kleine Turbine an, die wiederum mechanische Energie erzeugt. Der Zugewinn lässt sich dann entweder direkt auf die Kurbelwelle übertragen oder durch einen Generator in elektrische Energie umwandeln, um diese dann in den Stromkreislauf einzuspeisen – z.B. in Bordnetze von Pkw. Am Heißgasprüfstand untersuchen die Forscher, wie sich einzelne Komponenten der Minikraftwerke bei unterschiedlichen Rahmenbedingungen verhalten.

Die Wissenschaftler sind eng mit anderen Antriebsexperten aus Forschungsinstituten und den Entwicklungsbereichen der Automobilhersteller vernetzt. »Selbstverständlich ist speziell der Kontakt zur Fahrzeugindustrie sehr groß. Die Entwicklung der Antriebskonzepte läuft in enger Abstimmung mit den Motorenherstellern. Die direkte Anwendung der Forschungsergebnisse in der Praxis steht im Vordergrund«, so Kollmeier.

Dr.-Ing. Hans-Peter Kollmeier | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Oktober/neue-fahrzeugantriebe-entwickeln.html

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Verbesserte Leistung dank halbiertem Gewicht
24.07.2017 | Technische Universität Chemnitz

nachricht Hochschule Bochum und thyssenkrupp präsentieren Solar-Sportcoupé
06.07.2017 | Hochschule Bochum

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie