Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Realität in virtuellen Crashtests

01.06.2007
Simulationen sind eine günstige, doch nicht immer ganz realistische Alternative zum Crashtest: So nimmt man an, dass sich Schweiß- und Klebeverbindungen bei einem Aufprall niemals lösen. Eine neue Simulation berücksichtigt auch das Versagen dieser Verbindungen.

Laut krachend prallt das Auto gegen die Wand, die Dummies werden fest in die Gurte gedrückt. Crashtests gehören zum Pflichtprogramm, bevor ein neues Automodell über die Straßen rollen darf. Die meisten dieser Zusammenstöße zerstören das Fahrzeug – ein teures Unterfangen. Wann immer es geht, ersetzen Autohersteller die Crashtests daher durch Simulationen am Computer. Doch auch diese Variante hat ihre Tücken: Sie berücksichtigt nicht, dass einzelne Karosserieteile und die Verbindungen dazwischen – seien es Klebverbindungen, Nieten, Schweißpunkte oder Laserstrahlnähte – brechen können. Man nimmt an, dass die Verbindungen unendlich belastbar sind.

Die Zahl der Fügestellen ist groß, ein Mittelklassewagen wird von etwa 5 000 Schweißpunkten und über 120 Metern Klebenähten sowie zahlreichen Nieten zusammengehalten. Platzen sie auf, kann das Hindernis bei einem Aufprall tiefer in das Auto eindringen und die Gefahr für die Insassen vergrößern. Welchen Belastungen halten die Nähte stand? Wann versagen sie? Forschern des Fraunhofer-Instituts für Werkstoffmechanik IWM in Freiburg gelang es erstmalig, dies zuverlässig zu simulieren. »Wir haben ein Ersatzmodell für die Crashsimulation entwickelt, das die Eigenschaften von Punktschweißverbindungen wiedergibt – inklusive des Versagens«, erklärt Silke Sommer, die das Projekt am IWM leitet. Um das Modell aufzustellen, mussten die Forscher zunächst einen Schritt zurückgehen und einzelne Fügestellen in einer Zugprüfmaschine experimentell untersuchen. So belasteten sie etwa einen Schweißpunkt unter Zug, Scherung, Biegung und Torsion. »Aus den Experimenten ermitteln wir Kennwerte und stellen daraus ein geeignetes Ersatzmodell für jede Fügeart auf«, sagt Sommer. Anschließend setzen die Forscher die verschiedenen Füge-Ersatzmodelle in das Crashmodell ein, das den ganzen Wagen repräsentiert – und an dem man verschiedene Aufprallsituationen einfach simulieren kann.

Ist erkannt, wo die Nähte bei einem Aufprall aufgehen, kann man die eingesetzte Fügetechnik und die Konstruktion der Karosserie anpassen. Das ist insbesondere beim Leichtbau interessant: Reduziert man die Dicke der Stahlbleche, müssen diese aus hochfestem Stahl ge-macht sein, um den Insassen genügend Schutz zu bieten. Je fester der Stahl, desto schwerer lässt er sich schweißen und desto höher das Risiko, dass die Verbindungen aufgehen. »Für punktförmige Schweiß- und Nietverbindungen und flächige Klebverbindungen haben wir Ersatzmodellierung und die ersten Verifikationen fast abgeschlossen«, sagt Sommer.

Silke Sommer | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iwm.fraunhofer.de

Weitere Berichte zu: Aufprall Crashtest Fügestelle Simulation

Weitere Nachrichten aus der Kategorie Automotive:

nachricht RFID-Technologie: Digitalisierung in der Automobilproduktion
02.01.2018 | Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

nachricht Wenn dein Auto weiß, wie du dich fühlst
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungsnachrichten

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie