Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderte Autos aus der Massenproduktion

05.12.2005


Nicht jeder Autokäufer kann sich eine Einzelanfertigung leisten. Aber auch ein erschwinglicher Neuwagen sollte individuellen Wünschen entsprechen - maßgeschneidert in der Massenproduktion. Die Informatiker Dr. Carsten Sinz und Prof. Wolfgang Küchlin haben auf dem Gebiet der Aussagenlogik und des automatischen Beweisens Programme entwickelt, die den Autobauern helfen, Wunschautos auf ihre Realisierbarkeit zu prüfen und die Bauteile "just-in-time" bereit zu halten.


Tübinger Informatiker machen Bereich des automatischen Beweisens für Hersteller nutzbar

Wer in Deutschland einen Neuwagen kaufen will, erwartet eine möglichst große Auswahl an Lack- und Sitzfarben, eine flexible Gestaltung vielleicht mit Klimaanlage, Standheizung oder Schiebedach - kurz: ein individuelles Fahrzeug. Teuer wie eine Einzelanfertigung darf es aber auch nicht sein. Maßgeschneidert in der Massenfertigung heißt das Schlagwort. Doch ein solches Angebot stellt die Automobilhersteller vor Probleme. Das beginnt schon bei der Auftragsannahme: Die Zahl der möglichen Kombinationen von Farben, Ausstattungen und Extras erreicht schnell astronomische Ausmaße, und in der Praxis ist nicht jedes Autobauteil mit jedem anderen frei kombinierbar. Mancher Wunsch erfordert etwa einen stärkeren Motor, andere Ausstattungen sind nicht in allen Ländern notwendig wie etwa ein Katalysator. Nun muss vor der Produktion zunächst geklärt werden, ob der Wunschkatalog des Kunden überhaupt umsetzbar ist und welche Bauteile für diesen speziellen Wagen gebraucht werden. Um solche Anfragen schnell und korrekt beantworten zu können, haben Prof. Wolfgang Küchlin und Dr. Carsten Sinz vom Wilhelm-Schickard-Institut für Informatik der Universität Tübingen in Zusammenarbeit mit der Industrie die Anwendungsmöglichkeiten des symbolischen Rechnens und automatischen Beweisens für ein Baubarkeits-Informationssystem erforscht.


"Im Durchschnitt wird eine individuelle Fertigung in der Automassenproduktion erst nach circa 35.000 Autos in der gleichen Kombination und Ausstattung wiederholt", sagt Wolfgang Küchlin. Bei Schwerlasttransportern werde jedes Fahrzeug im Schnitt sogar nur anderthalbmal gebaut. Doch wie kann das symbolische Rechnen dabei helfen, die großen Datenmengen bei der Maßanfertigung in der Massenproduktion zu bewältigen? Da muss Wolfgang Küchlin dann doch ein wenig ausholen: "In unserem Arbeitsgebiet rechnen wir mit Symbolen statt mit konkreten Zahlen. Ein Teilbereich ist das automatische Beweisen. Es geht um einen Zweig der mathematischen Logik, der Aussagenlogik, die auch als so genannte Boolesche Algebra bekannt ist. Man kann mathematische Sätze automatisch mit Hilfe der Rechenleistung von Computern beweisen", sagt er. Man könne in der Logik Aussagen so formulieren und in den Computer eingeben, dass dieser errechnen kann, ob die Aussage wahr oder falsch ist. Gibt zum Beispiel ein Kaufinteressent für seinen Pkw in den Wunschkatalog unter anderem Klimaanlage und Doppelscheinwerfer ein, so lässt sich dies mathematisch in eine Regel fassen, die von einem Rechenprogramm im Computer auf "wahr" beziehungsweise "machbar" oder "falsch" beziehungsweise "nicht möglich" getestet werden kann. "Nun lassen sich manche Wünsche aus technischen Gründen nicht kombinieren, weil sie etwa räumlich nicht alle unterzubringen sind. Andere Dinge sind aus rechtlichen Gründen zu berücksichtigen", erklärt der Wissenschaftler. Schließlich gebe es noch Kombinationen im Wunschkatalog, die die Marketingabteilung des Herstellers nicht zulassen möchte, zum Beispiel Sitzfarben, die sich mit der Karosseriefarbe beißen.

Solche Kombinationen und Einschränkungen werden in der Aussagenlogik durch umfangreiche Regelsysteme formuliert. Das sieht dann zum Beispiel so aus: B(S175)= M1/M3/M5/M6 - das heißt: Die Bestelloption wird in einem Code niedergelegt, hier die Nummer S175. Die Baubarkeitsregel dafür besagt, dass Motor 1, 3, 5 oder 6 eingebaut werden muss. "Nicht immer reichen so einfache Verknüpfungen aus. Die Regeln können sich über viele Zeilen hinziehen", sagt Küchlin. Dabei muss unter Umständen mit 600 Optionen für das Auto, 350 Ländercodes und etwa 3300 Regeln herumjongliert werden. "Die erste Frage lautet immer: Lässt sich das gewünschte Auto bauen?". Wegen der Größe und Anzahl der Regeln schließt sich aber sofort die weitere Frage an: "Ist das Regelsystem selbst korrekt oder enthält es in sich Widersprüche?". Auch hier kommt das automatische Beweisen zu Hilfe. Ein korrektes Regelsystem muss gewisse Kriterien erfüllen, die sich wiederum als mathematische Aussagen formulieren und automatisch beweisen - oder widerlegen - lassen. Rein theoretisch könne man in der Aussagenlogik für jede Aussage beweisen, ob sie wahr oder falsch ist. Doch wenn die Aussagen lang und verwickelt sind, könne es in der Praxis wegen begrenzter Rechnerkapazitäten zu Problemen kommen.

"Die Grundzüge des automatischen Beweisens sind bereits Anfang der 1960er-Jahre gelegt worden. Damals war das aber ein rein theoretisches Arbeitsgebiet", erzählt Küchlin. Erst in den 1990er-Jahren hätten dann Wissenschaftler ein Arsenal an Methoden entwickelt, mit dem das automatische Beweisen praktisch anwendbar wurde. "Der Anstoß zu diesen Fortschritten kam aus der Chip-Produktion. Die Industrie ist höchst interessiert daran, dass die mikroelektronischen Schaltungen, die in Boolescher Algebra beschrieben werden, logisch korrekt gebaut sind", sagt Küchlin. Ein Prozessorenhersteller habe vor einigen Jahren wegen eines Fehlers in der Logik der Schaltungen Chips zurücknehmen und neu produzieren müssen, die Kosten erreichten 400 Millionen Dollar. Um Fehlern und unnötigen Kosten vorzubeugen, wurde in der Chip-Produktion ein zusätzliches Prüfverfahren auf der Basis des automatischen Beweisens etabliert.

Dr. Carsten Sinz hat die Erkenntnisse aus den Hardware-Testverfahren genutzt, um die Anwendungen für die Automobilindustrie zu entwickeln. Dafür hat er im Dezember 2004 den Förderpreis für den wissenschaftlichen Nachwuchs des Verbands der Metall- und Elektroindustrie Baden-Württemberg an der Uni Tübingen erhalten. Jetzt arbeiten die Tübinger Forscher in Projekten mit einem Auto- und einem Medizintechnikhersteller zusammen. Die Prüfprogramme sind prinzipiell auch für andere Bereiche oder Produkte wie zum Beispiel Schweißgeräte nutzbar. "Auch die werden heute in Modulen hergestellt, sodass der Kunde zum Beispiel auswählen kann, welche Materialien mit dem Gerät hauptsächlich geschweißt werden sollen", erklärt Küchlin. Doch mit der Feststellung, ob ein Auto oder ein Gerät sich in der Praxis bauen lässt, sind die Methoden des automatischen Beweisens noch nicht ausgereizt. Denn nun muss der Hersteller wissen: Sind alle Bauteile für das gewünschte Auto vorhanden und rechtzeitig lieferbar? "Dafür müssen die Regeln mit Stücklisten verknüpft werden. Und das sind für einen Pkw schätzungsweise 35.000 Positionen", sagt Küchlin. Andersherum kann mit den Programmen der Informatiker auch die Frage beantwortet werden: Sind in der langen Liste Bauteile, die etwa wegen der Änderung von Modellen nicht mehr gebraucht werden? "Das müssen die Hersteller aus Kostengründen ständig überprüfen."

Das automatische Beweisen geht in diesen Bereichen über das akademische Interesse hinaus, erklärt der Informatiker: "Wenn die Regeln für die Baubarkeit eines Autos falsch formuliert sind, kann es passieren, dass ein Auftrag zurückgewiesen wird, obwohl man das Auto hätte bauen können. Das ist ein wirtschaftlicher Schaden für das Unternehmen." Der kann auch entstehen, wenn ein Auftrag auf der Grundlage falscher Regeln angenommen wird und dann doch nicht realisierbar ist: "Dann ist der Kunde verärgert." "Geschäftskritisch" ist auch die Verwaltung der Stücklisten für die Produktion. "Bei der heutigen Lieferung ’just-in-time’ werden bei den Herstellern nur noch minimale Lager angelegt. Wird also auch nur ein winziges Teil nicht pünktlich angeliefert, bleibt das Fließband in der Produktion stehen", schildert Küchlin die Probleme. Er meint aber, dass die Fertigung und damit die Arbeitsplätze nur durch die Individualisierung der Produkte in Deutschland gehalten werden können. "Wenn eine Firma tausend genau gleiche Stücke - Autos, Schweißgeräte oder andere Maschinen - herstellen will, ist die Produktion in China viel billiger, damit kann man hier zu Lande nicht konkurrieren." (7780 Zeichen)

Nähere Informationen:

Prof. Dr. Wolfgang Küchlin
Wilhelm-Schickard-Institut für Informatik
Sand 14
72076 Tübingen
Tel. 0 70 71/2 97 04 70; Sekretariat Tel. 0 70 71/2 97 04 71
Fax 0 70 71/29 50 61
E-Mail kuechlin@informatik.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Aussagenlogik Bauteil Massenproduktion Regelsystem Wunschkatalog

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie