Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klare Sicht im Dunkeln - Optische Filter verhelfen Nachtsichtsystemen zur Serienreife

12.09.2005


Nachtsichtsysteme mit Infrarottechnik stellen ein deutliches Sicherheitsplus bei nächtlichen Autofahrten dar. Allerdings muss beim Einsatz von Infrarotlicht verhindert werden, dass der Gegenverkehr irritiert wird oder eine Augenschädigung durch Infrarotbeleuchtung entstehen kann. Der Glasspezialist SCHOTT hat daher spezielle optische Interferenzfilter entwickelt, die dafür sorgen, dass nur der gewünschte Wellenlängenbereich zwischen ca. 780 und 1.100 Nanometern (nm) die Scheinwerferlinse passieren kann. Durch ein spezielles Design wird ein Rot-Eindruck des Scheinwerfers verhindert, der Farbeindruck der restlichen Intensität liegt im gesetzlich erlaubten Weiß-Bereich.



Nächtliche Autofahrten sind anstrengend und bergen Risiken: Obwohl nachts nur 20% des Verkehrs stattfinden, passieren während dieser Zeit rund 40% aller tödlichen Unfälle. Neben möglichen Ursachen wie z.B. Übermüdung, ist es oft die eingeschränkte Sicht des Fahrers, die zu diesen Gefahren führt. Um die Sicherheit im Straßenverkehr zu erhöhen, arbeiten Automobilhersteller und Zulieferer mit Hochdruck daran, neue, intelligente Scheinwerfertechnologien zu entwickeln. Das dynamische Kurvenlicht führte zu einem deutlichen Sicherheitsplus, markiert jedoch erst den Beginn zukünftiger Entwicklungen. .



Aktive Nachtsichtsysteme auf dem Vormarsch.

Einen viel versprechenden Ansatz bieten aktive Nachtsichtsysteme: Nachdem sie bereits in Japan die Serienreife erlangt haben, erhalten sie nun Einzug in den europäischen Markt. Nachtsichtsysteme dienen als Assistenzsysteme, die dem Fahrer neben dem Abblendlicht zusätzliche Informationen über die Verkehrssituation vor allem im Fernbereich liefern sollen. Das Prinzip: Ein Scheinwerfer leuchtet das Verkehrs-geschehen mit unsichtbarem Infrarot-Licht bis zu 150 Meter vor dem Fahrzeug aus. Es wirkt wie Fernlicht, blendet aber nicht. Der Bereich wird von einer speziellen, Infrarot-empfindlichen Kamera als Bild aufgenommen, elektronisch bearbeitet und wirklichkeitsgetreu auf einem Monitor oder Head-Up-Display wiedergegeben. Auf diese Weise lassen sich auch entfernte Hindernisse deutlich erkennen.

Trennung zwischen Infrarotstrahlung und sichtbarem Licht erforderlich.

Für den Einsatz aktiver Nachtsichtsysteme müssen unterschiedliche gesetzliche Anforderungen erfüllt sein: Neben einem sicheren Einbau in den Hauptscheinwerfer muss die Infrarotstrahlung vom sichtbaren Licht getrennt werden, um den Gegenverkehr nicht zu irritieren. Der Glasspezialist SCHOTT hat daher spezielle optische Interferenzfilter entwickelt, die dafür sorgen, dass nur der gewünschte Wellenlängenbereich zwischen 780 und 1.100 nm die Linse passieren kann. Auf diese Weise wird ein Rot-Eindruck des Scheinwerfers verhindert, der Farbeindruck der restlichen Intensität liegt im gesetzlich erlaubten Weiß-Bereich.

Die hierfür eingesetzten Interferenzfilter setzen sich aus mehr als 50 dünnen dielektrischen Metalloxidschichten zusammen. In einem Hochvakuum-Aufdampfverfahren werden die dünnen Interferenzschichten auf den Glasträger aufgebracht. Durch das ionenunterstützte Aufdampfverfahren oder das reaktive Ionenplattieren entstehen besonders harte und kompakte Interferenzschichten. Auf diese Weise erhält man Interferenzfilter mit hoher Klimabeständigkeit und sehr temperaturstabilen spektralen Charakteristiken, wie sie für den Einsatz in Autoscheinwerfern erforderlich sind. Das Mehrschichtsystem bewirkt, dass das Licht mehrere Schichtgrenzen passieren muss. An jeder Grenzfläche zwischen zwei Schichten kommt es zur Reflexion des einfallenden Lichtes. Die reflektierenden Teilstrahlen überlagern sich beim Austritt aus der Interferenzschicht. Bei dieser Überlagerung wird der Rot-Eindruck des Scheinwerfers verhindert, während Licht der erlaubten Wellenlänge zwischen 780 und 1.100 nm passieren kann. Somit kann allen Anforderungen des Gesetzgebers entsprochen und gleichzeitig die Sicherheit beim Autofahren in der Nacht deutlich erhöht werden. .

SCHOTT ist ein internationaler Technologiekonzern, der seine Kernaufgabe in der nachhaltigen Verbesserung der Lebens- und Arbeitsbedingungen der Menschen sieht. Dafür werden Spezialwerkstoffe, Komponenten und Systeme entwickelt. Schwerpunkte sind die Branchen Hausgeräteindustrie, Optik und Elektronik, Pharmazie und Solarenergie. Der SCHOTT Konzern ist mit Produktions- und Vertriebsstätten in allen wichtigen Märkten kundennah vertreten. Rund 17.200 Mitarbeiter erwirtschaften einen Weltumsatz von 2 Milliarden Euro. Die technologische und wirtschaftliche Kompetenz des Unternehmens ist verbunden mit der gesellschaftlichen und ökologischen Verantwortung.

Im Automotive-Bereich liefern sieben Geschäftsbereiche der SCHOTT AG innovative Systemlösungen an Kunden in der Automobilindustrie. Oberstes Ziel ist, durch intelligente Produkte das Autofahren noch sicherer und komfortabler zu gestalten. Interferenzfilter für Sensortechnik, Glas-Metall-Komponenten für Airbagzünder und Gurtstraffer sowie Lichtwellenleiter aus Glasfasern zum Datentransfer im Automobil sind einige Beispiele der umfangreichen Produktpalette. Weltweit sind mehr als 250 Millionen Fahrzeuge mit Applikationen des Mainzer Glas-Spezialisten ausgestattet.

Matthias M. Reinig | SCHOTT AG
Weitere Informationen:
http://www.schott.com

Weitere Berichte zu: Interferenzfilter Interferenzschicht Nachtsichtsystem

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften