Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klare Sicht im Dunkeln - Optische Filter verhelfen Nachtsichtsystemen zur Serienreife

12.09.2005


Nachtsichtsysteme mit Infrarottechnik stellen ein deutliches Sicherheitsplus bei nächtlichen Autofahrten dar. Allerdings muss beim Einsatz von Infrarotlicht verhindert werden, dass der Gegenverkehr irritiert wird oder eine Augenschädigung durch Infrarotbeleuchtung entstehen kann. Der Glasspezialist SCHOTT hat daher spezielle optische Interferenzfilter entwickelt, die dafür sorgen, dass nur der gewünschte Wellenlängenbereich zwischen ca. 780 und 1.100 Nanometern (nm) die Scheinwerferlinse passieren kann. Durch ein spezielles Design wird ein Rot-Eindruck des Scheinwerfers verhindert, der Farbeindruck der restlichen Intensität liegt im gesetzlich erlaubten Weiß-Bereich.



Nächtliche Autofahrten sind anstrengend und bergen Risiken: Obwohl nachts nur 20% des Verkehrs stattfinden, passieren während dieser Zeit rund 40% aller tödlichen Unfälle. Neben möglichen Ursachen wie z.B. Übermüdung, ist es oft die eingeschränkte Sicht des Fahrers, die zu diesen Gefahren führt. Um die Sicherheit im Straßenverkehr zu erhöhen, arbeiten Automobilhersteller und Zulieferer mit Hochdruck daran, neue, intelligente Scheinwerfertechnologien zu entwickeln. Das dynamische Kurvenlicht führte zu einem deutlichen Sicherheitsplus, markiert jedoch erst den Beginn zukünftiger Entwicklungen. .



Aktive Nachtsichtsysteme auf dem Vormarsch.

Einen viel versprechenden Ansatz bieten aktive Nachtsichtsysteme: Nachdem sie bereits in Japan die Serienreife erlangt haben, erhalten sie nun Einzug in den europäischen Markt. Nachtsichtsysteme dienen als Assistenzsysteme, die dem Fahrer neben dem Abblendlicht zusätzliche Informationen über die Verkehrssituation vor allem im Fernbereich liefern sollen. Das Prinzip: Ein Scheinwerfer leuchtet das Verkehrs-geschehen mit unsichtbarem Infrarot-Licht bis zu 150 Meter vor dem Fahrzeug aus. Es wirkt wie Fernlicht, blendet aber nicht. Der Bereich wird von einer speziellen, Infrarot-empfindlichen Kamera als Bild aufgenommen, elektronisch bearbeitet und wirklichkeitsgetreu auf einem Monitor oder Head-Up-Display wiedergegeben. Auf diese Weise lassen sich auch entfernte Hindernisse deutlich erkennen.

Trennung zwischen Infrarotstrahlung und sichtbarem Licht erforderlich.

Für den Einsatz aktiver Nachtsichtsysteme müssen unterschiedliche gesetzliche Anforderungen erfüllt sein: Neben einem sicheren Einbau in den Hauptscheinwerfer muss die Infrarotstrahlung vom sichtbaren Licht getrennt werden, um den Gegenverkehr nicht zu irritieren. Der Glasspezialist SCHOTT hat daher spezielle optische Interferenzfilter entwickelt, die dafür sorgen, dass nur der gewünschte Wellenlängenbereich zwischen 780 und 1.100 nm die Linse passieren kann. Auf diese Weise wird ein Rot-Eindruck des Scheinwerfers verhindert, der Farbeindruck der restlichen Intensität liegt im gesetzlich erlaubten Weiß-Bereich.

Die hierfür eingesetzten Interferenzfilter setzen sich aus mehr als 50 dünnen dielektrischen Metalloxidschichten zusammen. In einem Hochvakuum-Aufdampfverfahren werden die dünnen Interferenzschichten auf den Glasträger aufgebracht. Durch das ionenunterstützte Aufdampfverfahren oder das reaktive Ionenplattieren entstehen besonders harte und kompakte Interferenzschichten. Auf diese Weise erhält man Interferenzfilter mit hoher Klimabeständigkeit und sehr temperaturstabilen spektralen Charakteristiken, wie sie für den Einsatz in Autoscheinwerfern erforderlich sind. Das Mehrschichtsystem bewirkt, dass das Licht mehrere Schichtgrenzen passieren muss. An jeder Grenzfläche zwischen zwei Schichten kommt es zur Reflexion des einfallenden Lichtes. Die reflektierenden Teilstrahlen überlagern sich beim Austritt aus der Interferenzschicht. Bei dieser Überlagerung wird der Rot-Eindruck des Scheinwerfers verhindert, während Licht der erlaubten Wellenlänge zwischen 780 und 1.100 nm passieren kann. Somit kann allen Anforderungen des Gesetzgebers entsprochen und gleichzeitig die Sicherheit beim Autofahren in der Nacht deutlich erhöht werden. .

SCHOTT ist ein internationaler Technologiekonzern, der seine Kernaufgabe in der nachhaltigen Verbesserung der Lebens- und Arbeitsbedingungen der Menschen sieht. Dafür werden Spezialwerkstoffe, Komponenten und Systeme entwickelt. Schwerpunkte sind die Branchen Hausgeräteindustrie, Optik und Elektronik, Pharmazie und Solarenergie. Der SCHOTT Konzern ist mit Produktions- und Vertriebsstätten in allen wichtigen Märkten kundennah vertreten. Rund 17.200 Mitarbeiter erwirtschaften einen Weltumsatz von 2 Milliarden Euro. Die technologische und wirtschaftliche Kompetenz des Unternehmens ist verbunden mit der gesellschaftlichen und ökologischen Verantwortung.

Im Automotive-Bereich liefern sieben Geschäftsbereiche der SCHOTT AG innovative Systemlösungen an Kunden in der Automobilindustrie. Oberstes Ziel ist, durch intelligente Produkte das Autofahren noch sicherer und komfortabler zu gestalten. Interferenzfilter für Sensortechnik, Glas-Metall-Komponenten für Airbagzünder und Gurtstraffer sowie Lichtwellenleiter aus Glasfasern zum Datentransfer im Automobil sind einige Beispiele der umfangreichen Produktpalette. Weltweit sind mehr als 250 Millionen Fahrzeuge mit Applikationen des Mainzer Glas-Spezialisten ausgestattet.

Matthias M. Reinig | SCHOTT AG
Weitere Informationen:
http://www.schott.com

Weitere Berichte zu: Interferenzfilter Interferenzschicht Nachtsichtsystem

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie