Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysator auch für den Kaltstart

06.12.2005


Ladungsverteilung eines nanooxidierten Palladiumclusters. Die blauen Bereiche befinden sich an den Orten der Palladium-Atome und repräsentieren Ladungsunterschuss. Die gelben Bereiche bedecken die Sauerstoffatome und stellen Ladungsanhäufung dar. Das Nanooxid ist ein wichtiger Zwischenzustand für die Verbrennung von CO zu CO2.


Materialforscher am Fraunhofer IWM analysieren Abbau von Schadstoffen und entwickeln völlig neue Designregeln.


Gemeinsam haben deutsche und finnische Materialforscher neue Erkenntnisse über die Reaktionsabläufe in Fahrzeug-Katalysatoren gewonnen. Werden sie beachtet, dann ist der Schadstoffabbau künftig auch auf den ersten Kilometern mit kaltem Motor und kaltem Kat möglich. Die Details wurden am 5. Dezember in der Vorab-online-Ausgabe der Zeitschrift "Nature Materials" veröffentlicht.

Das Ergebnis kommt zunächst ganz unscheinbar daher: Mitarbeiter des Fraunhofer-Instituts für Werkstoffmechanik IWM und des Materialforschungszentrum der Universität Freiburg berechnen und erklären zusammen mit Kollegen der finnischen Universität Jyväskylä, die katalytischen Eigenschaften von Palladium-Nanopartikeln auf einer keramischen Oberfläche und entdecken dabei einen neuartigen Katalysemechanismus. Bei genauerem Hinsehen haben diese Resultate jedoch weit reichende Konsequenzen für die Luftreinhaltung. Die Forschergruppe um Michael Moseler fand nämlich, dass besonders kleine Palladiumpartikel schon bei tiefen Temperaturen Sauerstoffmoleküle (O2) aus der Umgebung zu atomarem Sauerstoff aufbrechen und in ihrem Innern speichern. Das dabei entstandene Palladium-Nanooxid zieht Kohlenmonoxid (CO) aus der Umgebung an, setzt gleichzeitig den atomaren Sauerstoff wieder frei und verbrennt dabei das giftige CO zu unschädlichem Kohlendioxid. Hinter dieser Entdeckung und der ihr zugrunde liegenden Modellierung der "Oxidation magnesiumgeträgerter Palladium-Cluster" verbergen sich intensive Forschungsarbeit und wertvolle Erkenntnisse für Katalysatorenhersteller der Fahrzeugindustrie.


Es geht um die katalytischen Eigenschaften von Übergangsmetallen, und im Besonderen von Palladium. Dieses kostbare Metall sitzt in den Keramikwaben der heutigen Autokatalysatoren. Dort beschleunigt es die entscheidenden Reaktionen, die zur Luftreinhaltung erforderlich sind. So sorgt es unter anderem dafür, dass Kohlenmonoxid in das für die Atemluft unschädliche Kohlendioxid oxidiert wird, oder dass "saures" Stickstoffmonoxid mit Kohlenmonoxid zu Stickstoff und Kohlendioxid reagiert. Doch obwohl Autokatalysatoren mittlerweile seit 20 Jahren eingesetzt werden, "ist ihre genaue Funktionsweise immer noch unverstanden", erläutert Michael Moseler, Mitarbeiter am Fraunhofer IWM Freiburg und am Materialforschungszentrum der Universität.

Einige zehn Nanometer sind die Partikel in den gängigen Kats groß. Diese sind riesig im Vergleich zu den atomaren Clustern, die Moseler und seine Kollegen untersuchen. Die Frage, so Moseler, war zunächst: "Wie und wo reagiert der Sauerstoff mit dem Kohlenmonoxid, und wie kann man diese Reaktion beschleunigen?" Die Antwort darauf wurde aber nicht durch Experimente, sondern mit Hilfe des Superrechners im John von Neumann-Institut für Computing in Jülich gefunden. Bei der quantenmechanischen Berechnung von neun Palladium-Atomen auf einem Keramikträger zeigte sich, dass die Sauerstoffatome schon bei sehr niedrigen Temperaturen - circa minus 20 Grad Celsius - angelagert wurden, um anschließend bei ähnlich tiefen Temperaturen mit dem Kohlenmonoxid zu reagieren.

Anders gesagt: Die Oxidation des Kohlenmonoxids, ist auch bei kaltem Motor, kaltem Kat und niedrigen Außentemperaturen kein Problem - "wenn die Keramik mit ultrafeinen Nanopartikeln beschichtet ist", betont Michael Moseler. Denn nur die kleinen Partikel mit wenigen Atomen reagieren so schnell. "Größere Palladiuminseln katalysieren erst von 100 Grad Celsius aufwärts", erläutert Michael Moseler.

Das herauszufinden, hat die Forscher aus Freiburg und dem finnischen Jyväskylä zwei Jahre gekostet. Es galt ein Rechenmodell mit den entscheidenden Parametern zu entwickeln, und "geduldig auf die häppchenweise Zuteilung von 100000den von Prozessorstunden zu warten," stöhnt Bernd Huber, Doktorand am Freiburger Materialforschungszentrum und Erstautor der Publikation. Der Aufwand hat sich gelohnt. Experimentelle Untersuchungen von Ulrich Heiz, Professor an der Technischen Universität München, geben den Theoretikern in allen wesentlichen Punkten Recht. Im Gegensatz zu den Experimentatoren haben die Theoretiker um Moseler jedoch Einblick in die grundlegenden atomistischen Prozesse und damit in mögliche neue Konzepte für Katalysatoren.

"Wenn Hersteller von Katalysatoren die Designvorgaben berücksichtigen, die sich aus unserer Arbeit ergeben, dann wird die Luft bald noch sauberer sein", ist Michael Moseler überzeugt. Im Detail stellen Moseler und seine Kollegen ihre Arbeit, die von der Deutschen Forschungsgemeinschaft unterstützt wird, ab 5. Dezember in der online-Ausgabe und danach in der Januar-Ausgabe 2006 der Zeitschrift "Nature Materials" vor.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften