Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der gute Ton zählt auch beim Auto

08.05.2006
Für die richtige Akustik beim Fahren testen die Hersteller Automobile in diversen Prüfständen - ein kompliziertes und teures Unterfangen. Die neu entwickelte "Adaptive car structure test facility" vereint Belas-tungs- und hydraulische Prüfstände in einem kompakten Modell.

Für manche Autofahrer gehört ein herzhaftes Knattern im Motor zum Fahrspaß. Die meisten Menschen bevorzugen jedoch ein etwas dezenteres Motorengeräusch. Autohersteller untersuchen die Akustik der verschiedenen Automodelle und Reifen bei unterschiedlichen Geschwindigkeiten und Fahrbahnbelägen daher sorgfältig. In speziellen Prüfständen rollt das Auto auf Trommeln mit einem Durchmesser von zwei bis drei Metern, auf denen nebeneinander verschiedene Fahrbahnbeläge angebracht sind. Diese Prüfstände sind teuer, bei hohen Geschwindigkeiten nicht ungefährlich und benötigen viel Platz. Zudem lassen sich die Auswirkungen von Bodenwellen und ähnlichen Erschütterungen nicht untersuchen - dafür muss auf hydraulische Prüfstände zurückgegriffen werden.


Ganzheitlicher Vollfahrzeugprüfstand zum Testen von Fahrgeräuschen. © Fraunhofer LBP

Forscher am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt haben nun erstmals einen Prüfstand entwickelt, der die unterschiedlichen Testmöglichkeiten in sich vereint. "Wir haben die hydraulischen Prüfstände mit einem hochdynamischen Belastungsinterface erweitert und können jetzt sowohl Betriebslasten im Frequenzbereich bis zu 50 Hz als auch vibro-akustische Belastungen im Bereich von 50 bis 1 000 Hz simulieren", erklärt Michael Matthias, stellvertretender Leiter des Kompetenzcenters Mechatronik/Adaptronik am LBF. Die Forscher zeichnen mit Hilfe von Sensoren zunächst die Vibrationen am Rad und im Innenraum eines Fahrzeugs auf, die beim Fahren mit unterschiedlichen Geschwindigkeiten und Reifenprofilen auf verschiedenen Straßenbelägen entstehen. Diese Vibrationen werden anschließend in einer Datenbank archiviert, um sie im Prüfstand schnell einkoppeln zu können. "Dieses Vibrationssignal verändern wir mit einem Algorithmus so, wie es auch beim realen Fahren auf dem Weg zum Ohr verändert würde und erhalten damit ein realistisches Klangbild", erklärt Matthias. Die Räder werden im Prüfstand durch Elektromotoren ersetzt, die gegen die Beschleunigung des Autos arbeiten und den Widerstand durch Straßenreibung und Steigungen simulieren.

Diese "Adaptive car structure test facility" dient den Wissenschaftlern als Entwicklungsumgebung für aktive Systeme, die Vibrationen im Fahrzeug verhindern. Sie eignet sich aber auch für Testbetriebe bei Automobilherstellern. Erschütterungen in Z-Richtung, also senkrecht zur Fahrbahn, können die Forscher bereits realitätsnah erzeugen - für Seitwärts-Erschütterungen, wie sie in Kurven entstehen, brauchen sie noch ein wenig Zeit.

Marion Horn | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/fhg/press/pi/2006/05/Mediendienst52006Thema5.jsp

Weitere Berichte zu: Akustik Prüfstand Vibration

Weitere Nachrichten aus der Kategorie Automotive:

nachricht RFID-Technologie: Digitalisierung in der Automobilproduktion
02.01.2018 | Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

nachricht Wenn dein Auto weiß, wie du dich fühlst
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics