Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer PAZ entwickelt faserverstärkte Kunststoffe für mobile Leichtbauanwendungen

19.08.2015

Unsere Autos werden leistungsstärker, bieten mehr Komfort und sind zunehmend mit dem Internet verbunden. Zusätzliche Funktionen gehen aber oft mit höheren verbrauchs- und herstellungsbedingten Emissionen einher. Um sie zu reduzieren, setzt man im Fraunhofer Pilotanlagenzentrum PAZ in Schkopau auf den Einsatz von faserverstärkten Kunststoffen – nicht nur wie bisher in Verkleidungsteilen, sondern gleichermaßen in der Struktur des Fahrzeugs.

Um die individuelle Mobilität zu erhalten, müssen Kosten und die Belastungen für die Umwelt gesenkt werden. Das wissen auch namhafte Autohersteller und haben schon frühzeitig Kontakt mit dem Fraunhofer PAZ aufgenommen, einer Gemeinschaftseinrichtung des Fraunhofer IWM Halle und des Fraunhofer IAP in Potsdam. Dort entwickeln die Forscher besonders leichte und robuste Kunststoffteile: UD-Tapes, also faserverstärkte Hybridstoffe aus zwei oder mehreren Materialien. Ziel dieser einzigartigen Auftragsforschung ist es, schwere und energieintensive Metallkonstruktionen zu ersetzen.


Automatisierte Fertigungszelle für die Herstellung von thermoplastbasierten Leichtbaustrukturen am Fraunhofer PAZ.

Professor Peter Michel und seine Mitarbeiter nutzen hierbei die idealen Elementeigenschaften der Verstärkungsfaser: Deren Ausrichtung kann direkt an den Lastverlauf angepasst und die auf das Bauteil einwirkende Last somit genau verteilt werden – ein großer Vorteil gegenüber metallischen Elementen. Diese Verteilung ermöglicht es, die besonders beanspruchten Stellen partiell zu verstärken und andere, weniger belastete Teile materialsparend herzustellen.

So ist man in der Lage, Gewicht zu reduzieren, Emissionen einzusparen und die Sicherheit der Fahrzeuginsassen zu erhöhen. »Wir wollen nicht nur Metalle durch Kunststoffe ersetzen, sondern über gänzlich neuartige Verbindungen nachdenken. Hybride Kunststoffe bieten viele Möglichkeiten«, beschreibt Michel die Potenziale. Ziel sei es, den Masseanteil von Kunststoff im Auto zu erhöhen. So sind heute bereits mehr als 25 Prozent Kunststoffe in einem Pkw verbaut, beim Vorreiter BMW i3 sogar 40 Prozent. Nach Einschätzung von Michel lässt sich dieser Wert noch auf knapp 50 Prozent steigern.

Für die Entscheidung, welches Material eingesetzt wird, ist allerdings nicht nur das Verhalten eines Bauteils entscheidend, sondern auch der energie- und kostenintensive Herstellungsprozess. »Die CO2-Bilanz eines Fahrzeugs muss bereits bei dessen Entstehung betrachtet werden. Es hilft nichts, wenn bei der Herstellung des Bauteils bereits so viel Energie aufgewendet wird, dass auch ein geringer Verbrauch den CO2-Footprint negativ bleiben lässt«, erklärt Michel. Deshalb sucht man am Fraunhofer PAZ ebenfalls nach Wegen, um leistungsfähige Kunsthybride möglichst energiesparend herstellen zu können.

Vor allem thermoplastische Verfahren zur Herstellung von faserverstärkten Kunststoffverbünden haben dabei Potenzial: Hierbei werden bereits konsolidierte Faser-Kunststoff-Verbunde erhitzt in ein Formwerkzeug gegeben und im gleichen Arbeitsgang funktionalisiert. Im Gegensatz zum duroplastischen Verfahren benötigen thermoplastisch verarbeitete Kunststoffhybride eine zehn Mal kürzere Produktionszeit.

Stofflich nutzen die Wissenschaftler in Schkopau vor allem Kohlenstofffaser, Glasfaser oder naturfaserverstärkte Kunststoffe, sogenannte Biopolymere. Besonders bei den Rezepturen der Glasfaser sieht Michel noch sehr viel Potenzial, den CO2-Footprint schon in der Herstellung positiv zu beeinflussen. Folgerichtig liegt der Fokus auf der Pilotierung besserer Herstellungsprozesse von thermoplastischen Kunststoffhybriden. In langjährigen Partnerschaften mit bekannten Maschinen-Herstellern wie KraussMaffei entwickeln die Fraunhofer-Forscher integrierte Prozesse für die Herstellung von Leichtbauteilen. In den nächsten Jahren möchte Michel diese Aktivitäten weiter ausbauen.

Über das Fraunhofer PAZ

Seit 2005 werden im Fraunhofer-Pilotanlagenzentrum für Polymersynthese und -verarbeitung PAZ in Schkopau neue Polymer-Produkte und innovative Technologien entlang der gesamten Wertschöpfungskette entwickelt – vom Monomer über die Polymersynthese und Kunststoffverarbeitung im Pilotmaßstab bis hin zum geprüften Bauteil nach Maß. In dieser Kombination und Größenordnung ist das Fraunhofer PAZ einmalig in Europa. Im Auftrag von Kunden etwa aus der Kunststoff- oder Automobilindustrie werden auf einer Technikums- und Laborfläche von derzeit rund 1700 Quadratmetern unterschiedlichste Polymersynthese- und Verarbeitungsverfahren maßgeschneidert bis in den industrienahen Maßstab umgesetzt. Dazu gehören auch der Umgang mit Leichtbau- und bio-basierten Materialien, die erdölbasierte Polymere ersetzen können.

Das Fraunhofer PAZ ist eine gemeinsame Initiative der Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam-Golm und für Werkstoffmechanik IWM in Halle. Unter der Leitung von Prof. Michael Bartke (IAP) bündeln beide Einrichtungen ihre Kompetenzen in der Polymersynthese (IAP) und Polymerverarbeitung (IWM) in einzigartiger Weise. Diese Zusammenarbeit, die technischen Möglichkeiten im Pilotmaßstab sowie die hohe Flexibilität der Anlagen sind Alleinstellungsmerkmale am FuE-Markt.


Pressekontakt:
Clemens Homann | Telefon +49 345 5589-213 | clemens.homann(at)iwmh.fraunhofer.de

Weiterer Ansprechpartner:
Prof. Dr. Peter Michel l Telefon +49 345 5589-203 l peter.michel(at)iwmh.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Weitere Informationen:
http://www.iap.fraunhofer.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie