Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flottenversuch Elektromobilität - Forschergruppe der WWU ist größter universitärer Partner

05.12.2008
Forscher der Universität Münster um Prof. Dr. Martin Winter sind an dem bundesweiten Großprojekt "Flottenversuch Elektromobilität" beteiligt, bei dem innovative Elektrofahrzeuge entwickelt werden sollen.

Das Projekt wurde von Bundesregierung und Volkswagen initiiert und wird gemeinsam mit Partnern aus Industrie und Universitäten durchgeführt. Insgesamt wird das Projekt über vier Jahre mit 32,5 Millionen Euro gefördert. Die Wissenschaftler aus dem Fachbereich Chemie und Pharmazie der WWU erhalten eine Projektförderung von 3,3 Millionen Euro und sind damit größter universitärer Partner im Projekt "Elektromobilität".

Ziel des Projekts ist die Weiterentwicklung der "Plug-In-Hybrid-Technik". Fahrzeuge, die mit dieser Technik ausgestattet sind, besitzen neben dem herkömmlichen Verbrennungsmotor als Antrieb eine Batterie, die über eine Steckdose aufgeladen werden kann (der englische Begriff "plug in" bedeutet "einstöpseln"). Die Batterie soll einerseits den Verbrennungsmotor im Beschleunigungsvorgang unterstützen, was den Fahrkomfort verbessert, und andererseits auch Bremsenergie zurückgewinnen, wodurch die Energie- und Klimafreundlichkeit gesteigert wird. Insgesamt soll sie den Spritverbrauch deutlich senken. Im Übrigen erlaubt die Plug-in-Hybrid-Technologie ein rein elektrisches Fahren, gerade auch auf Kurzstrecken wie im Stadtverkehr.

Die Weiterentwicklung der Batterien für Hybridfahrzeuge mit Verbrennungs- und Elektromotor zum reinen Elektrofahrzeug ist schwierig. Die herkömmlichen Batterien haben eine zu geringe Reichweite und sind zu teuer. Langfristig wäre ein reines Elektrofahrzeug, das ohne Sprit auskommt, jedoch energie- und klimatechnisch ausgesprochen attraktiv und daher auch für die Forscher wünschenswert. "Wir wollen Lithium-Ionen-Batterien für den Einsatz im Auto entwickeln. Diese Batterien haben dreimal soviel Energiepotential wie herkömmliche Autobatterien. Das würde zumindest für den Pendlerverkehr reichen, zumal, wenn man das Auto beim Parken an der Steckdose auflädt", so Prof. Winter vom Institut für Physikalische Chemie der WWU.

An dem Projekt sind an der WWU auch Prof. Dr. Hellmut Eckert aus dem Institut für Physikalische Chemie sowie Prof. Dr. Uwe Karst, Prof. Dr. Rainer Pöttgen und Prof. Dr. Hans-Dieter Wiemhöfer aus dem Institut für Anorganische und Analytische Chemie beteiligt. Sie alle untersuchen im Rahmen des Projekts die einzelnen Zellen der Lithium-Ionen-Batterien auf ihre Reichweite und Belastbarkeit hin. In einem Großzellen-Prüfstand (LCTF, "Large Cell Test Facility"), der für die Versuche in einem sogenannten Containerdorf aufgebaut wird, simulieren die Forscher die Auswirkungen von Autofahrten auf die Batteriekomponenten. Nach den "Fahrten" werden die Komponenten auf Alterungseffekte untersucht. "Wir sind vielleicht sogar dann in der Lage, Maßnahmen vorzuschlagen, die der vorzeitigen Batteriealterung entgegen wirken und damit die Haltbarkeit verbessern. Das schont unser aller Geldbeutel", so Prof. Winter.

Prof. Winter hat als Experte für Lithium-Ionen-Technologie an der WWU seit Januar 2008 eine Stiftungsprofessur für Angewandte Materialwissenschaften zur Energiespeicherung und Energieumwandlung inne, die von den Unternehmen Chemetall, Evonik Industries und Volkswagen über einen Zeitraum von fünf Jahren mit insgesamt rund 2,5 Millionen Euro ausgestattet wird.

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.uni-muenster.de/Chemie.pc/winter/

Weitere Nachrichten aus der Kategorie Automotive:

nachricht 3D-Scans für die Automobil-Industrie
13.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Jedem Fahrer das passende Fahrzeug
03.01.2017 | Fraunhofer-Institut für Chemische Technologie ICT

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie