Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Endoskopie im Verbrennungsmotor

18.03.2005


Neue Messmethoden erlauben Forschern einen Blick in den laufenden Motor


Die Ansprüche an die Autoindustrie steigen: Schneller, leiser, sauberer soll das Auto von morgen sein. Mit dieser Entwicklung müssen auch die Untersuchungsmethoden Schritt halten, die im Entwicklungsprozess eingesetzt werden. Wissenschaftler des Instituts für Kolbenmaschinen der Universität Karlsruhe leisten hierbei Pionierarbeit. Sie haben Messtechniken entwickelt, mit denen sie die Vorgänge im Brennraum eines Ottomotors untersuchen - bei laufendem Betrieb. Ihr Handwerkszeug haben sie der Medizin entliehen: Ein Endoskop erlaubt ihnen den Blick ins Motorinnere.

Eine Zündkerze bewegt sich nicht - diese Tatsache stellt die Konstrukteure von neuartigen Ottomotoren vor eine problematische Aufgabe. In herkömmlichen Ottomotoren wird ein Gemisch aus Luft und Kraftstoff per Ventil in den Brennraum eingeleitet. Die Zündkerze sorgt für die Zündung mit anschließender Verbrennung. Bei Dieselmotoren hingegen wird nur Luft in den Brennraum gebracht, der Kraftstoff hingegen über eine Düse direkt in den Brennraum eingespritzt. Die Zündung kommt hier durch eine starke Verdichtung und Aufheizung des Gemischs zustande.


Die Autoindustrie übernimmt diese Methode der Direkteinspritzung zunehmend auch für Otto-Motoren. Dabei ergibt sich folgendes Problem: Nach dem Einspritzen muss sich der Kraftstoff mit der Luft zu einer zündfähigen Mischung vermengen. Da die Zündung nur an einem Ort - dem der Zündkerze - möglich ist, funktioniert der Motor nur dann reibungslos, wenn es tatsächlich gelingt, die zündfähige Mischung beider Gase genau dorthin zu führen. Im anderen Fall kommt es zu Zündaussetzern, eine unvollständige Verbrennung des Kraftstoffs ist die Folge. Dr. Amin Velji, Geschäftsführer des Instituts für Kolbenmaschinen: "Im Dieselmotor haben wir das Problem nicht, hier kann das Gemisch an jedem Ort im Brennraum zünden. Beim Ottomotor aber brauchen wir die Zündkerze und die lässt sich örtlich eben nicht verändern."

Die Faktoren, die auf die Güte der Gemischbildung und damit auf die Vollständigkeit der Verbrennung einwirken, sind vielfältig. Wissenschaftler vom Institut für Kolbenmaschinen der Universität Karlsruhe haben deshalb mehrere Messtechniken entwickelt, mit Hilfe derer sie die folgenden vier relevanten Vorgänge untersuchen: Die Strömung der Luft im Brennraum kurz vor der Kraftstoffeinspritzung, die Gemischbildung während und nach der Einspritzung selbst, die Zusammensetzung des Kraftstoff-Luftgemisches an der Zündkerze sowie die Flammenausbreitung während der Verbrennung.

Den Verbrennungsvorgang messen die Wissenschaftler endoskopisch: Die Flammenausbreitung wird von einem Endoskop, dessen Optik einen Winkel von 70 Grad erfasst, festgehalten und durch eine Photomultiplier (PM)-Kamera aufgezeichnet. Als Messgröße zeichnet das Endoskop die Eigenemission der OH-Radikale im UV-Bereich auf, die während der Verbrennung entstehen. Die für diese Untersuchungen verwendete Versuchsapparatur gibt es nur an der Universität Karlsruhe: Je nach Aufgabenstellung wird das Endoskop durch eine kleine Öffnung in den Brennraum eines mehrzylindrigen Serienmotor oder eines Einzylinderforschungsmotors eingeschoben. Die Optik besteht aus 10 000 Lichtleitern, welche die Signale mit einer Frequenz von 200 000 Bildern pro Sekunde an die PM-Kamera weiterleiten. Da das optische System im Brennraum extremen Bedingungen ausgesetzt ist, wird es über Druckluft ständig gekühlt.

Ein weiteres optisches Messverfahren wenden die Forscher des Instituts bei der Messung der Luftströmung im Zylinder kurz vor der Kraftstofffeinspritzung an: Bei der "Particle-Image-Velocimetry" - kurz PIV - setzen sie der Luft so genannte Tracerpartikel zu, die mittels eines gepulsten Laserlichtschnitts beleuchtet werden. Eine senkrecht zur Messebene angeordnete Kamera nimmt das Licht, das an diesen Teilchen gestreut wird, auf. So wird ein zweidimensionales Feld an Partikeln aufgezeichnet. Die Geschwindigkeit der Teilchen finden die Wissenschaftler dadurch heraus, dass sie die Partikel zweimal kurz hintereinander belichten: Durch die Positionsänderung der Teilchen zwischen den beiden Belichtungen errechnen sie unter Berücksichtigung der dazwischen liegenden Zeit deren Geschwindigkeit. Das "Fenster", durch das die Forscher bei dieser Messmethode ins Innere des Motors schauen, ist ein Glasring, der zu diesem Zweck in das Motorgehäuse eingelassen wird.

Ebenfalls durch einen endoskopischen Zugang oder mit Hilfe einer speziellen Zündkerze können die Wissenschaftler die Gemischqualität zum Zündzeitpunkt beurteilen: Die Zündfunkenemissionsspektroskopie erlaubt durch die Erfassung der aus dem Zündfunken ausgesendeten Strahlung die Bestimmung der lokalen Gemischzusammensetzung zum Zündzeitpunkt direkt an der Zündkerze.

Die Ergebnisse der Untersuchungen sollen helfen, die innermotorische Verbrennung zu optimieren: So ordnen die Wissenschaftler beispielsweise der endoskopisch gemessenen Eigenemission der OH-Radikale eine gleichzeitig aufgenommene Messung der Drücke im Motor zu und untersuchen diese Zusammenhänge.

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www-ifkm.mach.uni-karlsruhe.de
http://www.uni-karlsruhe.de

Weitere Berichte zu: Brennraum Endoskop Ottomotor Verbrennung Zündkerze

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften