Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizientes Elektroauto mit Sportlergenen: Visio.M-Projekt zeigt im Fahrtest Bestleistungen in Effizienz und Fahrdynamik

25.06.2014

Kleine Batterie, große Reichweite – diese Gleichung ist nur durch hohe Effizienz zu lösen. Gleichzeitig ist eine gute Fahrdynamik Grundlage für sicheres und angenehmes Fahren. Wie gut das E-Mobility-Projekt Visio.M diese Forderungen erfüllt, zeigte das Entwicklerteam der Technischen Universität München (TUM) bei Fahrversuchen mit einem aktuellen Prototypen auf dem Rollfeld des ehemaligen Flughafens Neubiberg.

Energieeffizienz ist der Schlüssel zu kostengünstiger Elektromobilität und ist daher ein zentrales Entwicklungsziel für Elektrofahrzeuge. Im Rahmen des Projekts Visio.M werden die Möglichkeiten und Grenzen der Effizienz in den Bereichen Fahrzeuggewicht, Aerodynamik, Antrieb, Rollreibung und Klimatisierung erforscht. Den aktuellen Forschungsstand zeigten die Wissenschaftler nun im direkten Vergleich mit bereits auf dem Markt erhältlichen Fahrzeugen.


Visio.M-Versuchsträger bei der Kreisfahrt

Foto: Andreas Heddergott / TUM

„Für die Optimierung der Energieeffizienz haben wir im Wesentlichen drei Stellschrauben: die Aerodynamik, den Rollwiderstand und das Fahrzeuggewicht“, sagt Prof. Markus Lienkamp vom Lehrstuhl für Fahrzeugtechnik der TU München. Beim Test auf dem ehemaligen Flughafen Neubiberg standen die Aerodynamik und das Fahrwerkskonzept im Mittelpunkt.

Mit einem cW-Wert von 0,24 und einer Stirnfläche von nur 1,69 Quadratmetern besitzt das Fahrzeug eine hervorragende Aerodynamik. Gleichzeitig verfügt der Visio.M-Versuchsträger über schmale Reifen (115/70 R 16) mit sehr geringem Rollwiderstand. „Ziel unseres Konzeptes ist es, möglichst wenig Energie für die Überwindung der Fahrwiderstände aufwenden zu müssen“, sagt Markus Lienkamp. Der Praxistest bestätigte, dass dies den Entwicklern gelungen ist: Mit der gleichen Energie gestartet, kam das Fahrzeug der TUM beim Ausrollversuch am weitesten.

Dass die schmalen Reifen auch bei schneller Kurvenfahrt sicheren Halt bieten, zeigten die Versuche im 18-Meter Slalom-Kurs und bei der schnellen Kreisfahrt. Hier zeigte der Visio.M-Prototyp seine hervorragende Fahrdynamik. „Eine gute Fahrdynamik ist die Grundlage für sicheres und angenehmes Fahren“ sagt Markus Lienkamp. „Wenn wir erreichen wollen, dass mehr Menschen Elektrofahrzeuge kaufen, müssen sie bei Sicherheit und Fahrverhalten den auf dem Markt befindlichen Kleinwagen ebenbürtig sein“.

Beim Visio.M wird die geringere Querkraftaufnahme der schmalen Reifen durch ein ausgeklügeltes Fahrwerkskonzept ausgeglichen, das in seiner Kinematik von Sportfahrwerken abgeleitet wurde. Eine gleichmäßige Verteilung des Gewichts auf Vorder- und Hinterachse und ein niedriger Schwerpunkt verleihen dem Fahrzeug eine hohe Stabilität. ABS und ESP geben zusätzliche Sicherheit.

Einen weiteren Beitrag sowohl zur Effizienz als auch zur Fahrdynamik leistet das aktive „Torque Vectoring“-Differenzial: Eine kleine Elektromaschine im Differenzial, die sowohl als Elektromotor als auch als Generator betrieben werden kann, verteilt die Kraft ideal auf die beiden Hinterräder. Insbesondere beim Bremsen in Kurven kann auf diese Weise erheblich mehr Energie zurück gewonnen werden als ohne Torque Vectoring. Gleichzeitig wird das Auto durch die günstige Verteilung der Antriebs- und Bremskräfte sehr viel agiler und sicherer.

Während der Versuchsträger noch verschiedene Testfahrten absolviert, wird im Rahmen des Projekts ein komplett neues Fahrzeug aufgebaut. In dieses fließen die Forschungsergebnisse des Visio.M-Projekts ein. So bekommt es beispielsweise ein Monocoque aus carbonfaserverstärktem Kunststoff. Auf der eCarTec im Oktober wird das Fahrzeug erstmals der Öffentlichkeit vorgestellt.

Am Forschungsprojekt „Visio.M“ beteiligen sich, neben den Automobilkonzernen BMW AG (Konsortialführer) und Daimler AG, die Technische Universität München als wissenschaftlicher Partner, sowie Autoliv B. V. & Co. KG, Bundesanstalt für Straßenwesen (BASt), Continental, E.ON AG, die Finepower GmbH, Hyve AG, die IAV GmbH, InnoZ GmbH, Intermap Technologies GmbH, LIONSmart GmbH, Amtek Tekfor Holding GmbH, Siemens AG, Texas Instruments Deutschland GmbH und TÜV SÜD AG. Das Projekt wird im Rahmen des Förderprogramms IKT 2020 und des Förderschwerpunkts „Schlüsseltechnologien für die Elektromobilität – STROM“ des Bundesministeriums für Bildung und Forschung (BMBF) über 2,5 Jahre gefördert und hat ein Gesamtvolumen von 10,8 Mio. Euro.

Dr. Andreas Battenberg | Technische Universität München (TUM)

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Mobilität von Morgen: Wie wir uns in Zukunft von A nach B bewegen
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Verbesserte Leistung dank halbiertem Gewicht
24.07.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie

Eine detaillierte Waldkarte des blauen Planeten

26.09.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index steigt weiter

26.09.2017 | Wirtschaft Finanzen