Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dieselrußfilter: Bayreuth Engine Research Center stellt neues Verfahren zur Beladungserkennung vor

03.03.2010
Kraftfahrzeuge mit Dieselmotoren müssen mit Diesel-Partikel-Filtern (DPF) ausgerüstet werden, damit sie umweltverträglich sind und keine gesundheitsschädlichen Auswirkungen haben.

Die Erkennung der Rußbeladung dieser Filter stellt bis heute eine technische Herausforderung dar. Auf dem Weg zu einer Lösung sind Ingenieurwissenschaftler der Universität Bayreuth jetzt einen wichtigen Schritt vorangekommen: Mit Hilfe von Mikrowellen lässt sich der Grad der Rußbeladung in den Filtersystemen exakt bestimmen.

Sowohl auf europäischer wie auf nationaler Ebene gibt es heute strenge Rechtsnormen zum Emissionsschutz, die nach derzeitigem Stand der Technik eine Ausrüstung von Dieselmotoren mit Diesel-Partikel-Filtern erforderlich machen. Denn Dieselabgase enthalten winzige Rußpartikel in Verbindung mit Kohlenwasserstoffen, Wasser und Aschen. Sie dringen infolge ihrer geringen Größe bis in das Lungengewebe ein und können so die menschliche Gesundheit erheblich schädigen. Der Ausstoß von Rußpartikeln kann aber durch hochwertige Diesel-Partikel-Filter erheblich reduziert werden.

Diese Filter bestehen aus keramischen Werkstoffen mit einem System winziger Poren, in denen sich die Rußpartikel festsetzen. Je mehr Partikel sie zurückhalten, umso weniger durchlässig werden sie. Dies hat zur Folge, dass der Filter im Laufe des Fahrbetriebs verstopft. Daher werden die Filter in regelmäßigen Abständen regeneriert, d.h. von den zurückgehaltenen Rußpartikeln befreit.

Kraftstoffverbrauch und Materialkosten:
Herausforderungen bei der Regeneration von Diesel-Partikel-Filtern
Für die Reinigung von Diesel-Partikel-Filtern sind in den Entwicklungsabteilungen der Automobilhersteller verschiedenartige Verfahren entwickelt worden. Diese haben jedoch - bei allen Unterschieden in den technischen Details - einen gemeinsamen Nachteil: Jede Regeneration führt zu einem erheblichen Mehrverbrauch an Kraftstoff; deutlich mehr, als wenn der Dieselmotor sich während der gleichen Zeit im normalen Fahrbetrieb befinden würde. Daher sind sowohl die Automobilhersteller als auch ihre Kunden daran interessiert, den Kraftstoffverbrauch bei der Regeneration der DPF so weit wie möglich zu senken.

Die Regeneration der Diesel-Partikel-Filter lässt sich mit umso weniger Kraftstoff durchführen, je präziser man weiß, (a) wie groß die Menge der im Filter zurückgehaltenen Rußpartikel ist und (b) wie sich diese Partikel im Kanalsystem des Filters verteilen. Diese Informationen ermöglichen über den geringeren Kraftstoffverbrauch hinaus noch in einer weiteren Hinsicht eine Kostensenkung. Derzeit werden in den Diesel-Partikel-Filtern teure Siliziumkarbide als Filtermaterialien verwendet. Denn nur sie sind in der Lage, einer Überhitzung standzuhalten, die bei der Regeneration eines Filters entstehen kann, wenn sich allzu viel Ruß im Filter angesammelt hat. Falls diese Rußbeladung aber exakt gemessen werden kann, lassen sich die Filter rechtzeitig vom Ruß befreien, und die Gefahr einer Überhitzung entfällt. Folglich können statt der kostspieligen Siliziumkarbide preisgünstigere keramische Filterwerkstoffe eingesetzt werden.

Messungen von Rußbeladungen durch Mikrowellentechnologie:
Auf dem Weg zur kostengünstigen Regeneration von Diesel-Partikel-Filtern
Wie können die Rußablagerungen im Inneren der Filter aufgespürt und gemessen werden? Die bisher entwickelten Verfahren beruhen auf der Messung des Abgasgegendrucks und sind fehleranfällig. Jetzt aber hat ein Team von Ingenieurwissenschaftlern am Bayreuth Engine Research Center (BERC), das zur Fakultät für Angewandte Naturwissenschaften (FAN) der Universität Bayreuth gehört, ein vielversprechendes Verfahren entwickelt. Es bietet präzise Informationen über die im Diesel-Filter angelagerten Rußrückstände. Das Team um die Professoren Gerhard Fischerauer und Ralf Moos hat das neue Verfahren kürzlich in der Zeitschrift "Measurement Science and Technology" vorgestellt.

Der Schlüssel zu dieser Erkundungsreise in das Innere der Diesel-Partikel-Filter ist die Mikrowellentechnologie. Bereits seit mehreren Jahrzehnten werden für Materialuntersuchungen sogenannte Hohlraumresonatoren eingesetzt. Ein solcher Resonator ist ein Hohlkörper, dessen Innenwände aus einem sehr leitfähigen Metall bestehen. Werden Mikrowellen in diesen Hohlkörper geleitet, entstehen elektromagnetische Resonanzen. Entscheidend ist nun, dass Materialproben, die in den Hohlraumresonator eingebracht werden, das Resonanzverhalten verändern: und zwar so, dass diese Änderungen präzise Rückschlüsse auf die elektrischen Eigenschaften der Materialproben erlauben.

Dieses Prinzip haben die Bayreuther Ingenieurwissenschaftler auf die Untersuchung von Diesel-Partikel-Filtern angewendet. Ein solcher Filter befindet sich in einem verbreiterten Abschnitt des Auspuffrohrs. Dieser Teil fungiert daher als Hohlraumresonator, während der Filter sozusagen die Materialprobe darstellt. Wie das Forscherteam der FAN nachweisen konnte, hängen die Resonanzeigenschaften des Systems signifikant davon ab, in welchen Mengen und an welchen Stellen sich Rußpartikel darin angesammelt haben. So hat sich beispielsweise herausgestellt, dass sich die Resonanzfrequenzen eindeutig - und zwar nahezu linear - mit der Rußbeladung des Diesel-Partikel-Filters verändern. Professor Moos ist daher im Hinblick auf die weitere Entwicklung zuversichtlich: "Unsere Forschungsergebnisse öffnen den Weg für kostengünstige Verfahren zur Regenerierung von Rußfiltern. Sowohl die Hersteller von dieselbetriebenen Kraftfahrzeugen als auch die Kunden werden davon profitieren können."

Titelaufnahme:
Gerhard Fischerauer, Martin Förster and Ralf Moos:
Sensing the soot load in automotive diesel particulate filters by microwave methods,
in: Measurement Science and Technology, 21 (2010), 035108
DOI-Bookmark: http://dx.doi.org/10.1088/0957-0233/21/3/035108
Kontaktadressen für weitere Informationen:
Prof. Dr.-Ing. Gerhard Fischerauer
- Lehrstuhl für Mess- und Regeltechnik -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7231
Telefax: +49 (0) 921 - 55 - 7235
E-Mail: gerhard.fischerauer@uni-bayreuth.de
Prof. Dr.-Ing. Ralf Moos
- Lehrstuhl für Funktionsmaterialien -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7401
Telefax: +49 (0) 921 - 55 - 7405
E-Mail: ralf.moos@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.berc.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Verbesserte Leistung dank halbiertem Gewicht
24.07.2017 | Technische Universität Chemnitz

nachricht Hochschule Bochum und thyssenkrupp präsentieren Solar-Sportcoupé
06.07.2017 | Hochschule Bochum

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie