Bildverarbeitung und optische Messtechnik für den Automobilbereich

Röntgen-Aufnahme eines Gussteils. Die roten Bereiche stellen Fehlstellen im Materialinneren dar. Quelle: Fraunhofer EZRT

Fraunhofer-Vision bietet für den Automobilbereich eine Vielzahl von Lösungen an, die am Messestand bei der Control in Sinsheim, Halle 6, Stand 6306, strukturiert und gebündelt dargestellt werden. Die Prüfsysteme sind in erster Linie für die Qualitätssicherung in der Fertigung geeignet, können jedoch auch in unterschiedlichen Phasen der Produktentwicklung zum Einsatz kommen. Zugrunde liegen Methoden aus den Bereichen Oberflächeninspektion, optische 3-D-Vermessung, Röntgen und Wärmefluss-Thermographie. Zu sehen sein wird ein Audi RS4, der von der Audi Feser GmbH, Schwabach, zur Verfügung gestellt wird.

Oberflächeninspektion

Die Inspektion von Oberflächen ist ein traditionelles Arbeitsgebiet der industriellen Bildverarbeitung und bewährt sich seit vielen Jahren in mannigfachen Anwendungen. Die Fortschritte der Technik ermöglichen nicht nur ständig höhere Prüfgeschwindigkeiten und kompaktere Bauweisen, sondern auch die Erfassung zusätzlicher Oberflächeneigenschaften. Heute können nicht nur zweidimensional aufgenommene Texturen ausgewertet werden; die neuen Verfahren ermöglichen auch die dreidimensionale Vermessung der Oberflächentopologie im Nanometerbereich. Darüber hinaus gelingt die schnelle Bewertung der Farbe oder Musterung einer Oberfläche.

Anwendungen der Oberflächeninspektion im Automobilbereich:

– Prüfung und gleichzeitige 3-D-Vermessung der Oberfläche von Karosserien oder von Karosserieteilen (Dellen, Kratzer, Geometrie)
– Prüfung von Dichtungen und Dichtflächen (Kratzer, Blasen, Dellen)
– kombinierte Oberflächen- und Formprüfung von Gussteilen (Getriebekomponenten, Wandlergehäuse, Turboladergehäuse usw.)
– Inspektion der Oberflächen von Leichtmetallrädern (Kratzer in Lackierung)
– Sichtprüfung der Innenflächen von Bohrungen und Rohren (Brems- und Kupplungszylinder)
– Prüfung der Oberfläche von Leder für Autositze (Textur)

Optische 3-D-Messtechnik

Mit optischer 3-D-Messtechnik können die geometrischen Abmessungen von Werkstücken berührungslos erfasst und überprüft werden. Da die Messung mit mechanischen Lehren oder Koordinatenmessmaschinen extrem zeitaufwändig ist, kann sie meist nur an Stichproben vorgenommen werden. Mit berührungslosen optischen Messmethoden werden die Messungen erheblich beschleunigt (etwa 10- bis 1000-fach), wodurch ein breiterer Einsatzbereich abgedeckt werden kann und in geeigneten Fällen Null-Fehler-Konzepte erreicht werden können.

Eine Erweiterung ihres Anwendungsspektrums erfährt die optische 3-D-Messtechnik durch die Kombination mit der industriellen Computertomographie, denn die mit Röntgen-CT-Verfahren erfassten Volumen-Daten eines Werkstücks können nun vollständig und mit allen innenliegenden geometrischen Elementen ausgewertet werden. Die optische 3-D-Messtechnik eignet sich damit nicht nur für die Qualitätssicherung sondern auch für die frühen Phasen der Produktentwicklung, indem z. B. ein Vergleich von CAD-Modell und Messdaten vorgenommen wird.

Mikrostrukturanalyse

Auch die Charakterisierung der Geometrie von komplexen Mikrostrukturen ist jetzt möglich: Volumen, Oberfläche, Krümmungsintegrale und die Eulerzahl werden für die vollständige Struktur oder für einzelne Objekte erkannt. Anisotropien und bevorzugte Richtungen werden nicht nur gefunden, sondern auch deren Stärke wird bestimmt. Geprüft werden kann auf die Weise z. B. Sinterkupfer. Sinterkupfer ist ein poröses Material, das als Filter bzw. Katalysator in vielen technologischen Prozessen eingesetzt wird

Anwendungen der 3-D-Messtechnik im Automobilbereich:

– Vermessung von Werkzeugen und Gussformen (Sandformen) und der Endprodukte, z. B. Zylinderköpfen
– Geometrieprüfung an Karosserieteilen, teilweise kombiniert mit Oberflächenprüfung
– Geometrieprüfung von Abgas-ZSB-Konvertern, Rädern, Kopfstützen, Rohr- und Schlauchleitungen, Sitzsysteme, Saugrohren der Verbrennungsmotoren, Zahnstangen (Lenkungsteile)
– Qualitätsprüfung von Slushhäuten (Lederimitat an der Schalttafel), Reifen, ZSB-Dachsystemen
– Beulenprüfung an Reifen (inkl. Lesen der Schrift)
– Vollständigkeitsprüfung bei der Montage – Modellbasierter Bildvergleich
– Auswertung und Analyse der (dreidimensionalen) Volumendaten, die z. B. auch durch Röntgen-Computertomographie gewonnen werden können
– Auswertung und Analyse der Mikrostruktur von Filtern

Röntgenprüfung

Die Röntgenprüftechnik kann grundsätzlich immer dann sinnvoll zum Einsatz kommen, wenn Fehlstellen im Materialinneren zerstörungsfrei gefunden werden müssen. Bei der Prüfung mit Röntgen strahlt eine Röntgenquelle durch einen Körper. Je nach Dichte und Dicke des Materials wird die Strahlung dabei mehr oder weniger geschwächt und auf der Gegenseite mit einem Röntgensensor in ein entsprechendes Grauwertbild umgewandelt. Mit der Wiederholung des Vorgangs aus verschiedenen Winkeln wird die komplette dreidimensionale Rekonstruktion des Objekts möglich.

Anwendungen:

– Erkennung von Dickenunterschieden und inneren Unregelmäßigkeiten wie Lunkern, Hohlräumen, Poren oder Rissen, z. B. in Gussteilen (Rädern, Lenkradgehäuse); Lunker sind Gefahr für die Festigkeit
– Lokalisierung von Fremdmaterialien in Produkten
– Vermessung von innenliegenden und verdeckten Strukturen

Anwendungen der Röntgenprüfung im Automobilbereich:

– Prüfung von Leichtmetall-Rädern auf Lunker, Hohlräume
– Prüfung von Gussteilen
– Röntgenprüfung als Dienstleistung

Wärmefluss-Thermographie

Eine weitere Methode zur Erkennung unterhalb der Oberfläche liegender, äußerlich nicht sichtbarer Fehlstellen in Werkstücken ist die Wärmefluss-Thermographie. Das Verfahren basiert auf der Analyse des Wärmeflusses bzw. der Wärmeleitfähigkeit in Prüflingen. Grundsätzliche Vorteile der thermographischen Wärmefluss-Prüfverfahren sind das bildgebende Funktionsprinzip, die hohe Prüfgeschwindigkeit und die relativ einfache Automatisierbarkeit. Darüber hinaus sind manche Aufgabenstellungen mit den klassischen ZfP-Verfahren nicht oder nicht im automatischen Einsatz zu lösen.

Mögliche Einsatzgebiete der Wärmefluss-Thermographie

– Erkennung von äußerlich nicht sichtbaren Materialdefekten in Werkstücken (Haftungs- und Klebefehler, Delaminationen, Blasen, Lunker, Risse oder Korrosionen)
– Wartung (Rotorblätter bei Windkraftanlagen, Flugzeugflügel u. Ä.)
– Bestimmung von Schichtdicken in Verbundmaterialien
– Überprüfung von Dichtigkeiten, Schweißnähten und Schweißpunkten
– Detektion von Fremdkörpern in Lebensmitteln

Anwendungen der Wärmefluss-Thermographie im Automobilbereich:

– Prüfung von Armaturen-Schaumteilen auf unterhalb der Oberflächen liegende Hohlräume und Blasen
– Prüfung von Laserschweißnähten
– Prüfung von Leder-Verklebungen z. B. bei Autositzen
– Auffinden von Korrosionen unterhalb des Lacks
– Erkennung von äußerlich nicht sichtbaren Rissen in der Karosserie oder in Karosserieteilen

Die Bildverarbeitungslösungen für den Automobilbereich werden auf der Control 2006, 9.-12. Mai, in Sinsheim (Halle 6, Stand 6306) vorgestellt.

Fachliche Anfragen:
Dr.-Ing. Norbert Bauer
Telefon: +49 9131 776-500
E-Mail: vision@fraunhofer.de

Presse-Anfragen:
Regina Fischer, M.A.
Telefon: +49 9131 776-530
E-Mail: vision@fraunhofer.de

Die Fraunhofer-Allianz Vision ist ein Zusammenschluss von Fraunhofer-Instituten zu den Themen Bildverarbeitung, optische Inspektion und 3-D-Messtechnik, Röntgenmesstechnik und zerstörungsfreie Prüfung.

Media Contact

Regina Fischer M.A. idw

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer