Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunft für stillgelegte Kernkraftwerke

28.10.2013
Nach der Reaktorkatastrophe von Fukushima im Jahr 2011 hat die Bundesregierung den Entschluss gefasst, bis 2022 endgültig aus der Atomenergie auszusteigen.

Diese Entscheidung bedeutet nicht nur die Notwendigkeit nach dem Ausbau erneuerbarer Energien, sondern wirft weitere Fragen auf. Was passiert mit den stillgelegten Kernkraftwerken (KKW)? Wie können diese sinnvoll rückgebaut werden und mit welchen Mitteln? Aber auch: Welche Technologien eignen sich am besten zur Speicherung der alternativ gewonnen Energie?

Das Fraunhofer-Institut für Bauphysik IBP sowie das Energiespeicherunternehmen Gravity Power GmbH sehen großes Potenzial in der gemeinsamen Beantwortung dieser Fragen. Deshalb haben sie sich nun zu einer strategischen Kooperation entschlossen. Sie werden ihr jeweiliges Know-how nutzen, um den Betreibern von KKWs ein Konzept zur Nutzung ihrer stillgelegten Kraftwerke anzubieten.

Kernkraftwerke bestehen zu einem Großteil aus Beton – insgesamt sprechen Experten von fast einer halbe Million Tonnen Stahl und Beton pro Kraftwerk – dementsprechend fallen beim Rückbau auch sehr große Mengen Altbeton an. Obwohl nur ein relativ geringer Prozentsatz des in einem Kernkraftwerk eingesetzten Materials tatsächlich radioaktiver Strahlung ausgesetzt war, rechnen die Wissenschaftler mit einer nur sehr geringen Marktakzeptanz für diesen Altbeton.

Statt ihn wieder zu verwerten soll der Bauschutt je nach Strahlungsbelastung in Endlagern bzw. auf herkömmlichen Deponien entsorgt werden. »Genau hier setzen wir mit unserer Kooperation mit Gravity Power an. Zur Umsetzung der neuen Speichertechnologie des Unternehmens wird eine große Menge Beton benötigt, den wir mit Hilfe unseres neuen Verfahrens zum Recycling von Altbeton zur Verfügung stellen können. Dafür eignet sich der Altbeton aus Kernkraftwerken«, erklärt Christof Karlstetter, Leiter der Gruppe »Betontechnologie« am Fraunhofer IBP.

Zwei neue Technologien – eine Lösung

Das Fraunhofer IBP arbeitet bereits seit einiger Zeit an der sogenannten elektrodynamischen Fragmentierung, einem Verfahren zum Recycling von Beton. Dabei wird der Altbeton nicht, wie bisher üblich, lediglich zertrümmert, sondern mittels elektrischen Entladungen in Sekundenbruchteilen in seine ursprünglichen Bestandteile wie z.B. Kieselstein, Zementstein etc. zerlegt. Diese Gesteinskörnung kann in neuem Beton wiederverwendet werden. Auch große Tonnagen lassen sich mit dem Verfahren schnell und kosteneffizient verarbeiten.

Gravity Power hat eine neue Speichertechnologie entwickelt und patentiert, die seit Jahrzehnten bewährte Technologien aus dem Tunnel- und Bergbau sowie der Pumpspeicherindustrie zu einem wasserdicht versiegelten, unterirdischen Speichersystem kombiniert. Um Energie zu speichern, wird hydraulisch ein massiver Kolben in einem 500 bis 800 Meter tiefen vertikalen Schacht mit einem Durchmesser von zirka 80 Metern angehoben. Soll die Energie frei gesetzt werden, senkt sich der Kolben langsam durch sein Eigengewicht und drückt das Wasser durch eine Turbine zur Stromproduktion. Dafür muss der Kolben jedoch ein möglichst hohes Gewicht haben. Um das zu erzielen, kann er auch mit recyceltem Beton aus KKWs befüllt werden.

Das Fraunhofer IBP und Gravity Power haben deshalb gemeinsam vor, den Betreibern von Kernkraftwerken anzubieten, den durch den Rückbau gewonnenen Altbeton elektrodynamisch zu fragmentieren und mit dem so neu gewonnenen Beton unterirdische Gravity Power Energiespeicher auf dem Gelände der alten Anlagen zu bauen. »Auf diese Weise könnten wir mehrere Fliegen mit einer Klappe schlagen. Die Betreiber von Kernkraftwerken könnten ein erhebliches Entsorgungsproblem lösen. Gleichzeitig könnte das Gelände alter Kraftwerke dank des dort verfügbaren Platzes und der bereits vorhandenen Netzanschlüsse sehr gut als Standort dringend benötigter Speicher für erneuerbare Energien genutzt werden«, erklärt Horatio von John, Geschäftsführer der Gravity Power GmbH.

Dipl.-Journ. Assja Terseglav
Presse und Öffentlichkeitsarbeit
Fraunhofer-Institut für Bauphysik IBP, Standort Holzkirchen
Fraunhoferstr. 10 | 83626 Valley | Germany
Telefon: +49 8024 643-642 | Telefax: +49 8024 643-366
assja.terseglav@ibp.fraunhofer.de

Assja Terseglav | Fraunhofer-Institut
Weitere Informationen:
http://www.ibp.fraunhofer.de

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Fassaden, die mitdenken
06.12.2017 | Technische Universität München

nachricht Beton aus dem 3D-Drucker
04.12.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik