Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Salze Bauwerke zum Bröckeln bringen

11.09.2014

Wenn der Zahn der Zeit an Gebäuden nagt, sind dafür oft Salzkristalle verantwortlich. Forschende des Instituts für Baumaterialien haben die sogenannte Salzsprengung genauer untersucht und können nun Verwitterungsprozesse besser vorhersagen.

Historische Steinbauwerke sind Touristenmagnete. So werden beispielsweise die jordanische Felsenstadt Petra, die mittelalterliche Stadt Rhodos in der Ägäis oder die in Sandstein gebauten Tempelanlagen im ägyptischen Luxor jährlich von mehreren Hunderttausend Personen besucht.

Diese Kulturgüter haben etwas gemeinsam: sie verwittern. Verantwortlich sind dafür Salze, die im Innern der porösen Baumaterialien kristallisieren und dabei eine so grosse Kraft entwickeln, dass sie die Steine sprengen oder zum Bröckeln bringen.

Dasselbe Problem stellt sich auch bei Betonbauwerken hierzulande. Forschende des Instituts für Baustoffe der ETH Zürich sowie der Princeton University haben nun die Wirkung von Salzen unter kontrollierten Bedingungen in einem Experiment nachgestellt. Die Ergebnisse sollen unter anderem Denkmalschützern und Restauratoren von Kulturgütern helfen, Vorhersagen zum Verwitterungsprozess von Bauwerken zu machen.

Salze könnten auf ganz unterschiedliche Weise in die Baumaterialen gelangen, erklärt Francesco Caruso, Postdoc in der Gruppe von Robert Flatt, Professor für Baustoffe. Der Betonbestandteil Zement beispielsweise beinhalte immer auch Gips (Calciumsulfat) und sogenannte Alkalisulfate.

Beides sind Salze. Und auch aus der Umwelt können Salze in Baustoffe gelangen: etwa über oberflächennahes, mineralienhaltiges Grundwasser, das über Kapillarkräfte in poröse Baumaterialien eindringt, oder über den Luftschadstoff Schwefeldioxid, der mit dem Calcium in Kalkstein zu Gips reagieren kann. 

Zudem können auch an der Oberfläche des Bauwerks abgelagerter Meerwasser-Sprühnebel oder Tausalz Schaden anrichten: «Werden diese Salze von Regen gelöst, kann die salzhaltige Flüssigkeit über Poren oder Risse ins Baumaterial eindringen», so Caruso. Verdunstet die Flüssigkeit bei Trockenheit, kristallisieren die Salze dort aus. Dabei können Teile des Mauerwerks weggesprengt werden.

Temperaturunterschiede führen zu Anreicherung

In ihrem Laborexperiment verwendeten die ETH-Forschenden Natriumsulfat, das Salz mit dem grössten bekannten Zerstörungspotenzial. Es existiert in zwei Formen, einer sogenannt anhydrierten und einer hydrierten Form. In mehreren Zyklen stellten sie Kalkstein-Würfel mit einer Seitenlänge von zwei Zentimetern in ein Natriumsulfat-Salzbad, wobei die Salzlösung in die Poren des Kalksteins eindringen konnte.

Anschliessend trockneten sie die Steine bei hoher Temperatur, bevor sie sie für eine nächste Runde erneut bei tieferer Temperatur ins Salzbad stellten. Während den Trocknungsphasen kristallisierte das Salz in anhydrierter Form in den Poren der Steine aus. In den Salzbad-Phasen drang erneut Salzlösung in die Poren ein, wobei das bereits kristallisierte Salz wieder in Lösung überging.

Über diesen kontrollierten zyklischen Prozess gelang es den Wissenschaftlern, das Salz im Innern des Steins stark anzureichern und dort eine in Bezug auf die hydrierte Form übersättigte Salzlösung zu erhalten. Mit einer übersättigten Salzlösung ist eine Flüssigkeit gemeint, in der wegen besonderer Umstände mehr Salz gelöst ist als es unter normalen Umständen möglich wäre.

Wichtige Erkenntnisse für Restauratoren

Das Experiment zeigte: Je grösser die Übersättigung, desto grösser ist das Zerstörungspotenzial des Salzes. Und auch die Temperatur spielte eine Rolle: In Durchläufen, in denen die Temperatur nie unter 25 Grad fiel, brauchte es im Experiment im Schnitt vier Zyklen, bis es zu Schäden kam, fiel die Temperatur auf 3 Grad, reichte ein Zyklus. «Es braucht diese Zyklen von Feuchte und Trockenheit, doch letztlich geht es um die Übersättigung», erklärt der Chemiker Caruso.

Für ein Bauwerk heisst das: Sind die Umweltbedingungen so, dass immer wieder Salzlösung in einen porösen Stein eindringen und die Flüssigkeit zum Beispiel wegen starker Sonnenstrahlung oder starken Winden wieder verdunsten kann, dann kann sich das Salz im Baumaterial stark übersättigen. «In diesem Fall braucht es keine grossen Salzmengen, um grosse Schäden anzurichten», sagt ETH-Professor Flatt. Bei gemässigteren Umweltbedingungen hingegen brauche es grössere Mengen. 

Dank des kontrollierten Experiments konnten die Forschenden das Phänomen dieser Salzsprengung erstmals ausführlich physikalisch-chemisch und mechanisch beschreiben. «Wir haben gezeigt, dass die Salzsprengung und die von ihr verursachten Schäden zumindest unter kontrollierten Bedingungen vorhersagbar sind», sagt Flatt. Die Experimente würden Restaurations- und Konservierungswissenschaftlern beispielsweise helfen zu entschieden, wie viel Salz von einem Bauwerk entfernt werden müsse um Schäden zu verhindern oder – falls das Salz nicht entfernt werden könne – um vorherzusagen, wann ein Gebäude Schaden nehmen werde.

Michelangelos Fresken und Geothermiebohrungen

Sichtbar sind solche auf diese Salzsprengung zurückzuführende Schäden nicht nur bei historischen Steinbauwerken. Auch bei Wandgemälden wie Michelangelos Fresken in der Sixtinischen Kapelle im Vatikan sei Salz ein Problem, sagt Caruso. Sogenannte Salzausblühungen im Mauerwerk, in der Malschicht oder dazwischen führten dort zu Schäden.

Ebenfalls zeigt sich das Problem im grossen Massstab in Erosionsprozessen und bei Geothermiebohrungen. «Die Salzsprengung formt ganze Felslandschaften», sagt Caruso. Und 2007 hat sich bei Erdwärmebohrungen in der Altstadt von Stauffen im Breisgau der Boden angehoben, an einigen Stellen bis zu 26 Zentimetern. In Häuserzeilen bildeten sich Risse. Wie sich im Nachhinein herausstellte, drang wegen der Bohrungen im Untergrund Grundwasser in eine Schicht, in der das Mineral Calciumsulfat in seiner anhydrierten Form vorlag. Durch die Verbindung mit dem Wasser bildete sich daraus Gips. Die Übersättigung dieses Gips erzeugte den Druck, der dazu führte, dass sich der Boden hob.

Anwenden möchten die Forschenden der ETH Zürich ihre Erkenntnisse nun in einem Projekt in der Altstadt von Havanna. Salz sei dort ein grosses Problem und führe dazu, dass bei Restaurierungsarbeiten eingesetzter Spezialputz nach wenigen Jahren bereits von den Fassaden bröckle, sagt Flatt. Im Forschungsprojekt soll es darum gehen, dafür die genauen Ursachen zu finden. Ausserdem möchten die an dieser Forschungsarbeit beteiligten Wissenschaftler der ETH Zürich und der Princeton University nach Möglichkeiten suchen, die Salzsprengung zu reduzieren, beispielsweise durch eine Veränderung der Wände der Poren von Baumaterialen auf der Nanoskala.

Literaturhinweis

Flatt RJ, Caruso F, Aguilar Sanchez AM, Scherer GW: Chemomechanics of salt damage in stone. Nature Communications 2014, doi: 10.1038/ncomms5823 [http://dx.doi.org/10.1038/ncomms5823]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/wie-salze-...

Medienstelle Hochschulkommunikation | ETH Zürich

Weitere Berichte zu: Baumaterialen Bauwerk Bauwerke Boden ETH Flüssigkeit Gips Poren Salz Salze Salzlösung Schaden Steine Temperatur Trockenheit Umweltbedingungen

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Bauübergabe der ALMA-Residencia
26.04.2017 | Max-Planck-Institut für Astronomie

nachricht Mehr Sicherheit und Effizienz im Tunnelbau - DFKI-Software steuert Wartungsroboter für Bohrwerkzeug
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie