Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Salze Bauwerke zum Bröckeln bringen

11.09.2014

Wenn der Zahn der Zeit an Gebäuden nagt, sind dafür oft Salzkristalle verantwortlich. Forschende des Instituts für Baumaterialien haben die sogenannte Salzsprengung genauer untersucht und können nun Verwitterungsprozesse besser vorhersagen.

Historische Steinbauwerke sind Touristenmagnete. So werden beispielsweise die jordanische Felsenstadt Petra, die mittelalterliche Stadt Rhodos in der Ägäis oder die in Sandstein gebauten Tempelanlagen im ägyptischen Luxor jährlich von mehreren Hunderttausend Personen besucht.

Diese Kulturgüter haben etwas gemeinsam: sie verwittern. Verantwortlich sind dafür Salze, die im Innern der porösen Baumaterialien kristallisieren und dabei eine so grosse Kraft entwickeln, dass sie die Steine sprengen oder zum Bröckeln bringen.

Dasselbe Problem stellt sich auch bei Betonbauwerken hierzulande. Forschende des Instituts für Baustoffe der ETH Zürich sowie der Princeton University haben nun die Wirkung von Salzen unter kontrollierten Bedingungen in einem Experiment nachgestellt. Die Ergebnisse sollen unter anderem Denkmalschützern und Restauratoren von Kulturgütern helfen, Vorhersagen zum Verwitterungsprozess von Bauwerken zu machen.

Salze könnten auf ganz unterschiedliche Weise in die Baumaterialen gelangen, erklärt Francesco Caruso, Postdoc in der Gruppe von Robert Flatt, Professor für Baustoffe. Der Betonbestandteil Zement beispielsweise beinhalte immer auch Gips (Calciumsulfat) und sogenannte Alkalisulfate.

Beides sind Salze. Und auch aus der Umwelt können Salze in Baustoffe gelangen: etwa über oberflächennahes, mineralienhaltiges Grundwasser, das über Kapillarkräfte in poröse Baumaterialien eindringt, oder über den Luftschadstoff Schwefeldioxid, der mit dem Calcium in Kalkstein zu Gips reagieren kann. 

Zudem können auch an der Oberfläche des Bauwerks abgelagerter Meerwasser-Sprühnebel oder Tausalz Schaden anrichten: «Werden diese Salze von Regen gelöst, kann die salzhaltige Flüssigkeit über Poren oder Risse ins Baumaterial eindringen», so Caruso. Verdunstet die Flüssigkeit bei Trockenheit, kristallisieren die Salze dort aus. Dabei können Teile des Mauerwerks weggesprengt werden.

Temperaturunterschiede führen zu Anreicherung

In ihrem Laborexperiment verwendeten die ETH-Forschenden Natriumsulfat, das Salz mit dem grössten bekannten Zerstörungspotenzial. Es existiert in zwei Formen, einer sogenannt anhydrierten und einer hydrierten Form. In mehreren Zyklen stellten sie Kalkstein-Würfel mit einer Seitenlänge von zwei Zentimetern in ein Natriumsulfat-Salzbad, wobei die Salzlösung in die Poren des Kalksteins eindringen konnte.

Anschliessend trockneten sie die Steine bei hoher Temperatur, bevor sie sie für eine nächste Runde erneut bei tieferer Temperatur ins Salzbad stellten. Während den Trocknungsphasen kristallisierte das Salz in anhydrierter Form in den Poren der Steine aus. In den Salzbad-Phasen drang erneut Salzlösung in die Poren ein, wobei das bereits kristallisierte Salz wieder in Lösung überging.

Über diesen kontrollierten zyklischen Prozess gelang es den Wissenschaftlern, das Salz im Innern des Steins stark anzureichern und dort eine in Bezug auf die hydrierte Form übersättigte Salzlösung zu erhalten. Mit einer übersättigten Salzlösung ist eine Flüssigkeit gemeint, in der wegen besonderer Umstände mehr Salz gelöst ist als es unter normalen Umständen möglich wäre.

Wichtige Erkenntnisse für Restauratoren

Das Experiment zeigte: Je grösser die Übersättigung, desto grösser ist das Zerstörungspotenzial des Salzes. Und auch die Temperatur spielte eine Rolle: In Durchläufen, in denen die Temperatur nie unter 25 Grad fiel, brauchte es im Experiment im Schnitt vier Zyklen, bis es zu Schäden kam, fiel die Temperatur auf 3 Grad, reichte ein Zyklus. «Es braucht diese Zyklen von Feuchte und Trockenheit, doch letztlich geht es um die Übersättigung», erklärt der Chemiker Caruso.

Für ein Bauwerk heisst das: Sind die Umweltbedingungen so, dass immer wieder Salzlösung in einen porösen Stein eindringen und die Flüssigkeit zum Beispiel wegen starker Sonnenstrahlung oder starken Winden wieder verdunsten kann, dann kann sich das Salz im Baumaterial stark übersättigen. «In diesem Fall braucht es keine grossen Salzmengen, um grosse Schäden anzurichten», sagt ETH-Professor Flatt. Bei gemässigteren Umweltbedingungen hingegen brauche es grössere Mengen. 

Dank des kontrollierten Experiments konnten die Forschenden das Phänomen dieser Salzsprengung erstmals ausführlich physikalisch-chemisch und mechanisch beschreiben. «Wir haben gezeigt, dass die Salzsprengung und die von ihr verursachten Schäden zumindest unter kontrollierten Bedingungen vorhersagbar sind», sagt Flatt. Die Experimente würden Restaurations- und Konservierungswissenschaftlern beispielsweise helfen zu entschieden, wie viel Salz von einem Bauwerk entfernt werden müsse um Schäden zu verhindern oder – falls das Salz nicht entfernt werden könne – um vorherzusagen, wann ein Gebäude Schaden nehmen werde.

Michelangelos Fresken und Geothermiebohrungen

Sichtbar sind solche auf diese Salzsprengung zurückzuführende Schäden nicht nur bei historischen Steinbauwerken. Auch bei Wandgemälden wie Michelangelos Fresken in der Sixtinischen Kapelle im Vatikan sei Salz ein Problem, sagt Caruso. Sogenannte Salzausblühungen im Mauerwerk, in der Malschicht oder dazwischen führten dort zu Schäden.

Ebenfalls zeigt sich das Problem im grossen Massstab in Erosionsprozessen und bei Geothermiebohrungen. «Die Salzsprengung formt ganze Felslandschaften», sagt Caruso. Und 2007 hat sich bei Erdwärmebohrungen in der Altstadt von Stauffen im Breisgau der Boden angehoben, an einigen Stellen bis zu 26 Zentimetern. In Häuserzeilen bildeten sich Risse. Wie sich im Nachhinein herausstellte, drang wegen der Bohrungen im Untergrund Grundwasser in eine Schicht, in der das Mineral Calciumsulfat in seiner anhydrierten Form vorlag. Durch die Verbindung mit dem Wasser bildete sich daraus Gips. Die Übersättigung dieses Gips erzeugte den Druck, der dazu führte, dass sich der Boden hob.

Anwenden möchten die Forschenden der ETH Zürich ihre Erkenntnisse nun in einem Projekt in der Altstadt von Havanna. Salz sei dort ein grosses Problem und führe dazu, dass bei Restaurierungsarbeiten eingesetzter Spezialputz nach wenigen Jahren bereits von den Fassaden bröckle, sagt Flatt. Im Forschungsprojekt soll es darum gehen, dafür die genauen Ursachen zu finden. Ausserdem möchten die an dieser Forschungsarbeit beteiligten Wissenschaftler der ETH Zürich und der Princeton University nach Möglichkeiten suchen, die Salzsprengung zu reduzieren, beispielsweise durch eine Veränderung der Wände der Poren von Baumaterialen auf der Nanoskala.

Literaturhinweis

Flatt RJ, Caruso F, Aguilar Sanchez AM, Scherer GW: Chemomechanics of salt damage in stone. Nature Communications 2014, doi: 10.1038/ncomms5823 [http://dx.doi.org/10.1038/ncomms5823]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/wie-salze-...

Medienstelle Hochschulkommunikation | ETH Zürich

Weitere Berichte zu: Baumaterialen Bauwerk Bauwerke Boden ETH Flüssigkeit Gips Poren Salz Salze Salzlösung Schaden Steine Temperatur Trockenheit Umweltbedingungen

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Stadtplanung im Klimawandel: HafenCity Universität Hamburg entwickelt Empfehlungen
24.03.2017 | HafenCity Universität Hamburg

nachricht Innenraum-Ortung für dynamische Umgebungen
23.03.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise