Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur der „Betonkrankheit“ entschlüsselt

06.11.2015

Wenn Brücken, Staumauern und andere Bauwerke aus Beton nach einigen Jahrzehnten von dunklen Rissen durchzogen sind, dann ist AAR die Ursache: die Alkali-Aggregat-Reaktion. Umgangssprachlich auch Betonkrankheit oder gar Betonkrebs genannt, handelt es sich um eine chemische Reaktion zwischen im Beton vorhandenen Stoffen und von aussen eindringender Feuchtigkeit. Wie das Material, das im Zuge der AAR entsteht, auf der Ebene einzelner Atome aufgebaut ist, haben jetzt Forschende des Paul Scherrer Instituts PSI und der Empa entschlüsselt – und dabei eine bislang unbekannte kristalline Anordnung der Atome entdeckt.

Eine zersetzende Alterserscheinung von Beton haben Forschende am Paul Scherrer Institut PSI gemeinsam mit Kollegen des Materialforschungsinstituts Empa untersucht: Die sogenannte Alkali-Aggregat-Reaktion (AAR). Im Zuge der AAR entsteht ein Material, das mehr Raum einnimmt als der ursprüngliche Beton und letzteren im Laufe von Jahrzehnten langsam von innen heraus sprengt.


Die sogenannte Betonkrankheit: Nahaufnahme von Rissen in Beton, die aufgrund der Alkali-Aggregat-Reaktion (AAR) entstanden sind.

Foto: Empa/Andreas Leemann

Den genauen Aufbau dieses Materials haben die Forschenden nun ergründet. Sie konnten zeigen, dass hier die Atome sehr regelmässig angeordnet sind, es sich also um einen Kristall handelt. Auch den Aufbau dieses Kristalls haben sie entschlüsselt: Es ist eine sogenannte Silizium-Schichtenstruktur, die in dieser Form noch nie zuvor beobachtet wurde. Diese Erkenntnis verdanken die Forschenden Messungen an der Synchrotron Lichtquelle Schweiz SLS am PSI. Die Forschungsergebnisse wiederum könnten helfen, zukünftig langlebigeren Beton zu entwickeln.

Weltweites Problem

Die AAR ist eine chemische Reaktion, die weltweit Betonbauten unter freiem Himmel betrifft. Sie geschieht, wenn Beton Wasser beziehungsweise Feuchtigkeit ausgesetzt ist. Beispielsweise sind in der Schweiz zahlreiche Brücken und bis zu 20 Prozent der Staumauern von AAR betroffen.

Bei der AAR sind die Grundzutaten des Betons selbst das Problem: Zement – der Hauptbestandteil von Beton – enthält Alkalimetalle wie Natrium und Kalium. In den Beton eindringende Feuchtigkeit – beispielsweise durch Regen – wird dadurch alkalisch.

Die zweite Hauptzutat von Beton sind Sand und Kies. Diese wiederum bestehen aus mineralischen Gesteinen, beispielsweise Quarz oder Feldspat. Chemisch betrachtet handelt es sich bei diesen Mineralien um sogenannte Silikate.

Mit diesen Silikaten reagiert nun das alkalische Wasser und führt zur Bildung von sogenanntem Alkali-Kalzium-Silikat-Hydrat. Dieses wiederum kann Feuchtigkeit aufnehmen. Dadurch allerdings dehnt es sich aus und sprengt mit der Zeit den Beton von innen. Dieser gesamte Prozess ist die Alkali-Aggregat-Reaktion AAR.

Da die AAR sehr langsam geschieht, entstehen zunächst winzige Risse, die mit blossem Auge nicht sichtbar sind. Im Laufe von drei, vier Jahrzehnten wachsen die Risse jedoch auf beträchtliche Breite und bedrohen schliesslich die Dauerhaftigkeit des gesamten Beton-Bauwerks.

"Die meisten Bauwerke, die heute an AAR leiden, wurden zwischen den 1960er und 1980er Jahren erbaut", erklärt Erich Wieland, Gruppenleiter Zementsysteme am PSI. "Auf das Problem der AAR ist die Forschungsgemeinde in Europa erst in den 70er Jahren aufmerksam geworden."

Ein neuer Kristall

Auch wenn die chemischen Vorgänge der AAR schon lange bekannt sind – die physikalische Struktur des im Zuge der AAR entstehenden Alkali-Kalzium-Silikat-Hydrats hatte bisher noch niemand identifiziert. Diese Wissenslücke konnten die Forschenden des PSI und der Empa nun schliessen.

Dafür untersuchten sie die Substanz einer 1969 erbauten Schweizer Brücke, die stark von AAR betroffen ist. Forschende der Empa hatten dieser Brücke eine Materialprobe entnommen. Ein schmales Stück davon wurde so lange heruntergeschliffen, bis eine hauchdünne Probe von nur 0,02 Millimeter Dicke übrig blieb. Diese Probe liess sich an der Synchrotron Lichtquelle Schweiz SLS mit einem extrem schmalen Röntgenstrahl durchleuchten, der 50 Mal dünner ist als ein menschliches Haar. Mittels sogenannter Diffraktionsmessungen und einer aufwendigen Datenanalyse konnten die PSI-Forschenden schliesslich die Kristallstruktur des Materials punktgenau bestimmen.

Es zeigte sich, dass das Alkali-Kalzium-Silikat-Hydrat eine bisher nie dokumentierte Silizium-Schichten-Kristallstruktur aufweist. "Normalerweise darf derjenige, der einen noch nicht katalogisierten Kristall entdeckt, diesem einen Namen geben", erklärt Rainer Dähn, Erstautor der Studie. "Allerdings muss es sich um einen in der Natur gefundenen Kristall handeln. Daher sind wir in diesem Fall nicht zu der Ehre gekommen", so der Forscher schmunzelnd.

Die Idee zu der aktuellen Studie hatte Mitautor Andreas Leemann, Gruppenleiter Betontechnologie an der Empa. Das Wissen über die Untersuchungsmethode per Röntgenstrahlen lieferten die Forschenden des PSI.

"Es gibt prinzipiell die Möglichkeit, dem Beton organische Stoffe beizumengen, die den Spannungsaufbau reduzieren können", erklärt Materialwissenschaftler Leemann. "Unsere neuen Ergebnisse stellen diese Überlegungen auf ein wissenschaftliches Fundament und könnten die Basis für neue Materialentwicklungen sein."

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.


Kontakt / Ansprechpartner

Dr. Rainer Dähn, Forschungsgruppe für Ton-Sorptionsmechanismen, Paul Scherrer Institut,
Telefon: +41 56 310 21 75, E-Mail: rainer.daehn@psi.ch [Deutsch, Englisch]

Dr. Erich Wieland, Forschungsgruppe für Zementsysteme, Paul Scherrer Institut,
Telefon: +41 56 310 22 91, E-Mail: erich.wieland@psi.ch [Deutsch, Englisch]

Dr. Andreas Leemann, Abteilung Beton und Bauchemie, Empa,
Telefon: +41 58 765 44 89, E-Mail: andreas.leemann@empa.ch [Deutsch, Englisch]

Originalveröffentlichung

Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures
R. Dähn, A. Arakcheeva, Ph. Schaub, P. Pattison, G. Chapuis, D. Grolimund, E. Wieland and A. Leemann
Cement and Concrete Research 14. Oktober 2015 (online)
DOI: 10.1016/j.cemconres.2015.07.012 http://www.sciencedirect.com/science/article/pii/S0008884615002094

Weitere Informationen:

http://www.psi.ch/media/struktur-der-betonkrankheit-entschluesselt Darstellung der Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen.

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Beton Empa Feuchtigkeit Lichtquelle PSI Probe Synchrotron

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Mehr Sicherheit und Effizienz im Tunnelbau - DFKI-Software steuert Wartungsroboter für Bohrwerkzeug
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Modernes Bauen mit längst vergessenen Techniken
12.04.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten