Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben alte Brücken länger als gedacht?

12.06.2017

Mehr Verkehr, größere Lasten: Werden die mehr als 50 Jahre alten Brücken in Deutschland nach aktuellen Normen beurteilt, weist ein Großteil von ihnen rechnerisch große Defizite auf. Trotzdem sind bei vielen Brücken äußerlich keine Schäden zu erkennen, die diese Defizite bestätigen würden. Diesem Widerspruch wollen Ingenieurinnen und Ingenieure der Technischen Universität München (TUM) jetzt auf den Grund gehen. Sie führen dafür Versuche zur sogenannten Querkrafttragfähigkeit an einer realen Spannbetonbrücke durch.

Lange hatten die Forscherinnen und Forscher nach dieser Brücke gesucht. Die Anforderungen waren klar: Vor 1966 erbaut, möglichst viele Brückenfelder zwischen den Pfeilern, gut zugänglich und natürlich bereits stillgelegt. Die 60 Jahre alte Saalebrücke Hammelburg in Unterfranken entspricht diesem Profil perfekt. Sie wies im Laufe der Jahre immer mehr Schäden auf, eine Sanierung wäre unwirtschaftlich gewesen. Seit Dezember 2016 fließt der Verkehr daher über eine neue Brücke.


Anbringung der Messtechnik.

Lehrstuhl für Massivbau / TUM

An der Saalebrücke Hammelburg wollen Ingenieurinnen und Ingenieure der TUM das Tragverhalten von realen Brücken testen und damit einem Widerspruch zwischen Theorie und Praxis auf den Grund gehen. Im Vergleich zu den vor 50 Jahre geltenden Normen schreiben die aktuellen, auf europäischer Ebene erarbeiteten Standards eine stark erhöhte sogenannte Querkrafttragfähigkeit vor. Grund für diese Änderung ist, dass viel mehr Schwerverkehr über die Brücken fließt, denn vor allem die Schwerlastfahrzeuge beanspruchen die Bauwerke.

Rechnerische Defizite, aber keine sichtbaren Schäden

... mehr zu:
»Bauwerke »Bewehrung »Massivbau »Pfeiler »Software »TUM

Bei der Querkraft handelt es sich um Beanspruchungen, die senkrecht zur Längsrichtung der Brücke wirken. "Brücken, die vor 1966 gebaut wurden, haben so gut wie keine vertikale Bewehrung, um die Querkräfte aufzunehmen", erklärt Prof. Oliver Fischer vom Lehrstuhl für Massivbau der TUM. Werden diese Brücken nach den neuen Regeln beurteilt, weisen sie massive Defizite auf. Die Konsequenz daraus ist, dass diese Brücken verstärkt, die Verkehrslasten verringert oder im Extremfall ganze Bauwerke abgerissen und erneuert werden müssen. Allerdings gibt es eine Diskrepanz zwischen der nach aktuellen Normen ermittelten theoretischen und der tatsächlichen Tragfähigkeit. "Es gibt viele Brücken mit einem errechneten Defizit, aber man sieht an den Bauwerken keine Schäden, die dies bestätigen", sagt Fischer.

Messungen im Bereich der Pfeiler

Das Querkrafttragverhalten ist sehr komplex, weshalb verschiedene theoretische Ansätze existieren, die es beschreiben. "Ein Problem ist, dass die experimentellen Untersuchungen dazu fast ausschließlich im Labor durchgeführt wurden", erklärt Fischer. "Im kleinen Maßstab verhalten sich viele Tragsysteme anders als im Realzustand." Auch der Einfluss, den die natürliche Witterung und die jahrzehntelange Alterung auf die Brücken haben, kann im Labor nicht realitätsgetreu abgebildet werden. Die geplanten Versuche an der Saalebrücke sollen diese Lücke schließen.

Die 163 Meter lange Brücke besteht aus sieben Einzelfeldern. "Die Querkraft ist in der Nähe der Pfeiler beziehungsweise Stützen am größten", sagt Fischer. Daher sind die Messungen an diesen Stellen besonders interessant. Die Versuche finden an fünf der sieben Felder und jeweils im Bereich der Stützen statt.

Eine Last von 400 Kleinwagen

Die Querkraftbelastung wird bei den einzelnen Versuchen mit einem extra für diese Großversuche gebauten Balken, einem sogenannten Belastungsträger, durchgeführt. Der Belastungsträger ist etwa 32 Meter lang, 1,80 Meter hoch und wiegt ca. 40 Tonnen. Die Gesamtbelastung kann auf bis zu 400 Tonnen gesteigert werden. Das entspricht der Last von zehn 40-Tonnen-Lkw oder 400 Kleinwagen.

Die Messtechnik ist aufwändig: Mithilfe von Glasfasern können die Wissenschaftlerinnen und Wissenschaftler etwa feststellen, wie sich der Beton dehnt und wo Risse entstehen. Der Lehrstuhl für Geodäsie der TUM unterstützt die Versuche durch den Einsatz von hochauflösenden Kameras. Diese dokumentieren die Rissbildung und die Bilder werden anschließend mit spezieller Software ausgewertet.

Ergänzend zu dem Freifeldversuch führen die Forscherinnen und Forscher umfangreiche numerische Simulationen sowie Untersuchungen im Labor durch. Sie haben dafür einen neuartigen Versuchsaufbau entwickelt, in den sie einen Teil einer Brücke einspannen und realitätsnah testen können. Fischer: "Unser klares Ziel ist, neue Ansätze zum Umgang mit älteren Brücken zu formulieren und die Tragreserven noch besser aber dennoch sicher auszunutzen. Hierdurch können im Einzelfall Ressourcen und Geld gespart werden."


Die Untersuchungen, die vom Bund finanziert werden, werden in enger Zusammenarbeit mit dem Bayerischen des Inneren, für Bau und Verkehr und dem Staatlichen Bauamt Schweinfurt durchgeführt. Die Arbeiten werden unterstützt von der Firma Arlt.

Bilder zur redaktionellen Verwendung:
https://mediatum.ub.tum.de/1362678

Kontakt:

Prof. Dr.-Ing. Oliver Fischer
Technische Universität München
Lehrstuhl für Massivbau
oliver.fischer@tum.de
+49 (89) 289 - 23038

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: Bauwerke Bewehrung Massivbau Pfeiler Software TUM

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Schaltbare Flüssigkeiten verbessern Energieeffizienz von Gebäuden
16.01.2018 | Friedrich-Schiller-Universität Jena

nachricht Mit mikroskopischen Luftblasen dämmen
15.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten