Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innenraum-Ortung für dynamische Umgebungen

23.03.2017

Eine Lokalisierungstechnologie wie GPS gibt es für den Indoor-Bereich nicht. Dies macht die Ortung vor allem in Werften schwierig. Die Umgebung im Schiffbau verändert sich durch den Bauprozess stetig. Zudem erschwert die metallische Umgebung die für eine Lokalisierung notwendige drahtlose Kommunikation. Mittels des neuen Ortungssystems, welches das Karlsruher Institut für Technologie (KIT) und seine Partner Meyer Werft und VOMATEC Innovations im Rahmen des Projektes SchiV 3.0 entwickelt haben, können Personen sich nun auch in einer dynamischen Umgebung innerhalb einer Halle verorten.

Anders als in der Automobilindustrie mit ihren fixen Produktionsstraßen werden Schiffe im „Blockbau-Prinzip“ gefertigt. Aus kleinen Teilen entstehen immer größere Einheiten. Diese sind teilweise schon begehbar, werden mit Kabeln und Rohren ausgestattet und werden schließlich zu Sektionen zusammengefügt. Zehn Sektionen wiederum bilden einen Block, der weiter ausgerüstet und schließlich in die Werfthalle transportiert wird. Ein Kreuzfahrtschiff zum Beispiel besteht aus 90 solcher Blöcke.


Routengänger auf Werften sollen in Zukunft digitale Informationen über Baufortschritt und Sicherheitsmängel zeitnah liefern.

Bild: M. Wessels / MEYER WERFT

„Die Lokalisierung von Personen und die zeitnahe Weitergabe von sicherheitsrelevanten Informationen ist in einer solchen Situation extrem schwierig“, erklärt Wilhelm Stork, Leiter des Instituts für Technik in der Informationsverarbeitung des KIT.

Derzeit geschehen etwa die Erfassung und Weitergabe von Sicherheitsmängeln und -risiken, zum Beispiel fehlende Geländer, freiliegende Kabel oder leicht entflammbare Bauabfälle wie Farben und Konservierungsstoffe manuell. Routengänger laufen das Schiff ab und erfassen kritische Zustände wie brennbare Materialien in der Nähe von Heißarbeiten auf Papierformularen. Am Ende ihres Kontrollgangs geben sie diese Informationen bei ihrem Vorgesetzten ab, der wiederum die notwendigen Maßnahmen einleitet.

„Das Innovationspotenzial ist riesig, wenn man Abläufe mit Hilfe digitaler Technologien regelt“, sagt Frank Hartmann vom Institut für Technik in der Informationsverarbeitung des KIT. Im Rahmen seiner Promotion hat Hartmann ein Lokalisierungssystem entwickelt, das nicht nur die schnellere Behebung von Sicherheitsrisiken und die Steigerung von Arbeitssicherheit ermöglicht.

Es hilft auch die Logistik – also den vorrauschauenden Transport von Baumaterial an den Einbauort im Inneren des entstehenden Schiffes – zu optimieren und den Baufortschritt – also die Abnahme von Gewerken – zeitnah zu dokumentieren. Sein System verfolgt einen hybriden Ansatz: Zusammen mit der notwenigen Infrastruktur der Baustelle – wie etwa der Stromversorgung – werden Antennen für ein Nahbereichs-Funkkommunikationssystem verlegt.

Aus der Messung des Abstandes zu mehreren Antennen lässt sich mittels Trilateration die Position bestimmen. Ist der Funkkontakt zu den Antennen im verwinkelten, stählernen Schiffsbauch zu schwach, wird die Position mittels der Bewegungs- und Beschleunigungssensoren eines mobilen Endgeräts und Koppelnavigation geschätzt. „So erreichen wir eine ausreichende Positionsgenauigkeit bei vertretbarem Installationsaufwand“, erklärt Hartmann die Kosten-Nutzen-Abwägung.

Das auf der Meyer-Werft in Papenburg erfolgreich erprobte System der läuft komplett digital. Sicherheitsmitarbeiter fotografieren in den Schiffsteilen Mängel, Risiken oder Baufortschritt und erfassen sie mittels einer vom Kooperationspartner VOMATEC entwickelten mobilen App als Arbeitsprozess - zum Beispiel „Abfall beseitigen“ - auf einem Smartphone. Das System erfasst gleichzeitig die Positionsinformationen und verkoppelt sie mit dem erforderlichen Arbeitsprozess. Beide Informationspakete werden in Echtzeit per Mobilfunk oder WLAN übertragen, als „Vorfall“ auf einem Server hochgeladen und können sofort weiter bearbeitet werden.

In einem klar definierten Bereich von rund 1200 Quadratmetern eines im Bau befindlichen Kreuzfahrtschiffes hat Hartmann mit seinem Prototypen auf der Meyer Werft bereits verschiedene Anwendungsszenarien durchgespielt. Über den Schiffbau hinaus sind der Tiefbau oder Flugzeugbau weitere denkbare Anwendungsfelder.

Das Projekt SchiV 3.0 wurde vom Bundesministerium für Wirtschaft und Energie und dem Projektträger Jülich gefördert. Konsortialpartner waren neben dem KIT die Meyer Werft GmbH und Co.KG und die VOMATEC Innovations GmbH. Das Projekt lief vom 2013 bis 2016.

Details zum KIT-Zentrum Information · Systeme · Technologien (in englischer Sprache): http://www.kcist.kit.edu

Weiterer Kontakt:
Kosta Schinarakis, Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.kcist.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik