Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gebäude kommen in Bewegung - Architekten schauen sich bei Pflanzen und Tieren aktive Konstruktionen ab

31.10.2008
Die Bionik, die sich als interdisziplinäre Wissenschaft Konstruktionsprinzipien der Natur für die Technik zunutze macht, gewinnt derzeit auch in der Architektur immer mehr an Bedeutung. Der Architekt Prof. Stefan Schäfer vom Institut für Massivbau an der TU Darmstadt ist einer der führenden Forscher in diesem neuen Fachgebiet.

Das "Vogelnest", das Stadion der Olympischen Spiele in Peking in diesem Sommer, hat seinen Spitznamen von der verwobenen Stahlkonstruktion. Dass sich Architekten von natürlichen Formen inspirieren lassen, ist nichts Neues.

Neu ist aber, dass sie sich gemeinsam mit Naturwissenschaftlern daran machen, ihre Bauwerke auf technisch innovative Weise natürlichen Konstrukten wie Schmetterlingsflügeln oder auch Blattstrukturen nachzubauen.

"Die Baubionik ist eine moderne Entwicklung in der Architektur, die in den letzten Jahren einen enormen Aufschwung erfahren hat. In Deutschland steckt sie mittlerweile schon nicht mehr in den Kinderschuhen", konstatiert Prof. Stefan Schäfer von der TU Darmstadt, einer der führenden Forscher in diesem neuen Fachgebiet. "Allerdings hinkt die Genehmigung innovativer bionischer Bauten der Forschung meist weit hinterher."

Nachhaltigkeit gewinnt an Bedeutung

Bionik ist eine Wortkreation aus "Biologie" und "Technik". Die interdisziplinäre Wissenschaft macht sich die im Zuge der Evolution über Jahrtausende optimierten Konstrukte der Natur zunutze. So war einem der Pioniere der Bionik, dem Ingenieur George de Mestral, aufgefallen, dass sich beim Spazierengehen im Fell seines Hundes regelmäßig Kletten verhakten. Er setzte die für Kletten typischen Häkchen zusammen mit passenden Schlaufen technisch um und lieferte damit das Patent für den Klettverschluss.

Im Bauwesen hat die Bionik beispielsweise die Fassadentechnik beeinflusst. Sie macht sich einen Effekt zunutze, der der Lotusblüte abgeschaut ist. Deren raue Oberfläche ist von einer Schicht feinster, dicht stehender Härchen überzogen, die die Blüte vor Schmutz schützt. Wassertropfen perlen rasch von den Blütenblättern ab und reißen dabei Schmutzpartikel mit. An Gebäudefassaden, Dächern, Glasflächen und auch an Zeltkonstruktionen sind solche sich selbst reinigenden Oberflächen keine Seltenheit mehr. Da sie in der Herstellung teurer sind, gehören sie in der Baubranche aber noch nicht zum Standard.

Doch das wird sich ändern, ist sich Schäfer sicher. "Der Gedanke der Nachhaltigkeit gewinnt immer mehr an Bedeutung und damit auch die Einbeziehung der Kosten, die ein Gebäude im Laufe seines gesamten Lebenszyklus verursacht", konkretisiert der Darmstädter Architekt. "Und da bionische Oberflächen deutlich seltener gereinigt und gepflegt werden müssen, amortisieren sich die Kosten schon nach kurzer Zeit. In den nächsten Jahren wird sich diese Einsicht zunehmend verbreiten."

Meister des Leichtbaus

Aber nicht nur Tricks in Sachen Sauberkeit kann sich die Baubranche von der Natur abgucken. Tiere und Pflanzen haben auch extreme 'Leichtbauten' von geradezu unglaublicher Stabilität hervorgebracht. Leichtbau gewinnt mit den knapper werdenden Energieressourcen immer mehr an Bedeutung. In der Natur ist der Leichtbau weit verbreitet, Tragwerke wie Pflanzenstiele oder auch lnsektenflügel benötigen ein Minimum an Material bei optimiertem Kraftverlauf.

"Die Natur hat über Jahrtausende Erfahrungen in energiesparenden, beweglichen Konstruktionen und im Leichtbau gesammelt. Ingenieure können sich diesen evolutionären Prozess zunutze machen", ist Schäfer überzeugt. Die Prinzipien des Leichtbaus hat unter anderem die aus Südamerika stammende Riesen-Seerose Victoria amazonica perfektioniert. Ihre Blätter können Gewichte von bis zu 60 kg tragen. "Die Verzweigungsstrukturen dieser Blätter sind ein sehr gutes Beispiel dafür, wie Versteifungsmaterialien nur dort eingesetzt werden, wo sie zwingend notwendig sind", begeistert sich der Architekt.

Bäume dagegen haben mit ihren V-förmigen Astgabeln ein System entwickelt, das maximale Traglast bei bestmöglicher Abtragung von Spannungen garantiert, wie sie bei Wind verstärkt auf den Baum einwirken. Bei Gebäuden sind es solche wiederholten Spannungsspitzen, die längerfristig zu Rissen und Brüchen führen. Baumförmige, dem Kraftverlauf folgende Stützen können maximale Spannungen und damit auch den Materialverschleiß deutlich reduzieren. Das wiederum ermöglicht Architekten, etwa den Überbau von Brücken schlanker auszuführen. Das ist nicht nur ästhetischer, sondern spart auch Material, Energie und Baukosten.

Intelligente Bauwerke reagieren auf die Umwelt

Die meisten Bauwerke sind heutzutage meist statisch und passiv, das heißt, sie können ihr Tragverhalten nicht situationsabhängig ändern. Fernziel der Baubioniker sind jedoch intelligente, aktive Tragwerke, die Umwelteinflüssen und Belastungen Rechnung tragen können. "Heutige Brücken zum Beispiel sind auf permanente Maximallast ausgelegt, wodurch das Material relativ schnell verschleißt", erläutert Schäfer. "Intelligente Brücken dagegen könnten sich der jeweiligen Situation anpassen. Sie verstärken ihren Versteifungszustand nur bei Belastung, also wenn zum Beispiel ein Zug darüber fährt", blickt Schäfer in die Zukunft. "In Phasen minimaler Beanspruchung 'entspannen' sie."

So könnten seilgestützte Brücken die Länge ihrer Trageseile mit Hilfe computergesteuerter Pressen automatisch den jeweiligen Kräften anpassen. Durch den sinkenden Materialverschleiß wäre es im Umkehrschluss auch möglich, leistungsfähigere Bauwerke wie etwa Brücken mit größeren Spannweiten zu errichten.

Tatsächlich existieren bereits einige aktive, wandelbare Bauten, wie beispielsweise bewegliche Fußgängerbrücken in Duisburg und Kiel, oder auch bewegliche Dächer von Stadien und Sporthallen. "Doch damit sich die Baubionik etablieren kann und man nicht in den Zulässigkeitskriterien der Genehmigungsverfahren gefangen bleibt, müssen auch politische Anstrengungen unternommen werden", fordert Schäfer. "Das wäre auch eine besondere Chance für die deutsche Baubranche, sich im internationalen Konkurrenzkampf zu profilieren."

Fachansprechpartner:
Prof. Stefan Schäfer, Institut für Massivbau, TU Darmstadt, Tel. 06151/16-7031, sts@massivbau.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops