Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gebäude kommen in Bewegung - Architekten schauen sich bei Pflanzen und Tieren aktive Konstruktionen ab

31.10.2008
Die Bionik, die sich als interdisziplinäre Wissenschaft Konstruktionsprinzipien der Natur für die Technik zunutze macht, gewinnt derzeit auch in der Architektur immer mehr an Bedeutung. Der Architekt Prof. Stefan Schäfer vom Institut für Massivbau an der TU Darmstadt ist einer der führenden Forscher in diesem neuen Fachgebiet.

Das "Vogelnest", das Stadion der Olympischen Spiele in Peking in diesem Sommer, hat seinen Spitznamen von der verwobenen Stahlkonstruktion. Dass sich Architekten von natürlichen Formen inspirieren lassen, ist nichts Neues.

Neu ist aber, dass sie sich gemeinsam mit Naturwissenschaftlern daran machen, ihre Bauwerke auf technisch innovative Weise natürlichen Konstrukten wie Schmetterlingsflügeln oder auch Blattstrukturen nachzubauen.

"Die Baubionik ist eine moderne Entwicklung in der Architektur, die in den letzten Jahren einen enormen Aufschwung erfahren hat. In Deutschland steckt sie mittlerweile schon nicht mehr in den Kinderschuhen", konstatiert Prof. Stefan Schäfer von der TU Darmstadt, einer der führenden Forscher in diesem neuen Fachgebiet. "Allerdings hinkt die Genehmigung innovativer bionischer Bauten der Forschung meist weit hinterher."

Nachhaltigkeit gewinnt an Bedeutung

Bionik ist eine Wortkreation aus "Biologie" und "Technik". Die interdisziplinäre Wissenschaft macht sich die im Zuge der Evolution über Jahrtausende optimierten Konstrukte der Natur zunutze. So war einem der Pioniere der Bionik, dem Ingenieur George de Mestral, aufgefallen, dass sich beim Spazierengehen im Fell seines Hundes regelmäßig Kletten verhakten. Er setzte die für Kletten typischen Häkchen zusammen mit passenden Schlaufen technisch um und lieferte damit das Patent für den Klettverschluss.

Im Bauwesen hat die Bionik beispielsweise die Fassadentechnik beeinflusst. Sie macht sich einen Effekt zunutze, der der Lotusblüte abgeschaut ist. Deren raue Oberfläche ist von einer Schicht feinster, dicht stehender Härchen überzogen, die die Blüte vor Schmutz schützt. Wassertropfen perlen rasch von den Blütenblättern ab und reißen dabei Schmutzpartikel mit. An Gebäudefassaden, Dächern, Glasflächen und auch an Zeltkonstruktionen sind solche sich selbst reinigenden Oberflächen keine Seltenheit mehr. Da sie in der Herstellung teurer sind, gehören sie in der Baubranche aber noch nicht zum Standard.

Doch das wird sich ändern, ist sich Schäfer sicher. "Der Gedanke der Nachhaltigkeit gewinnt immer mehr an Bedeutung und damit auch die Einbeziehung der Kosten, die ein Gebäude im Laufe seines gesamten Lebenszyklus verursacht", konkretisiert der Darmstädter Architekt. "Und da bionische Oberflächen deutlich seltener gereinigt und gepflegt werden müssen, amortisieren sich die Kosten schon nach kurzer Zeit. In den nächsten Jahren wird sich diese Einsicht zunehmend verbreiten."

Meister des Leichtbaus

Aber nicht nur Tricks in Sachen Sauberkeit kann sich die Baubranche von der Natur abgucken. Tiere und Pflanzen haben auch extreme 'Leichtbauten' von geradezu unglaublicher Stabilität hervorgebracht. Leichtbau gewinnt mit den knapper werdenden Energieressourcen immer mehr an Bedeutung. In der Natur ist der Leichtbau weit verbreitet, Tragwerke wie Pflanzenstiele oder auch lnsektenflügel benötigen ein Minimum an Material bei optimiertem Kraftverlauf.

"Die Natur hat über Jahrtausende Erfahrungen in energiesparenden, beweglichen Konstruktionen und im Leichtbau gesammelt. Ingenieure können sich diesen evolutionären Prozess zunutze machen", ist Schäfer überzeugt. Die Prinzipien des Leichtbaus hat unter anderem die aus Südamerika stammende Riesen-Seerose Victoria amazonica perfektioniert. Ihre Blätter können Gewichte von bis zu 60 kg tragen. "Die Verzweigungsstrukturen dieser Blätter sind ein sehr gutes Beispiel dafür, wie Versteifungsmaterialien nur dort eingesetzt werden, wo sie zwingend notwendig sind", begeistert sich der Architekt.

Bäume dagegen haben mit ihren V-förmigen Astgabeln ein System entwickelt, das maximale Traglast bei bestmöglicher Abtragung von Spannungen garantiert, wie sie bei Wind verstärkt auf den Baum einwirken. Bei Gebäuden sind es solche wiederholten Spannungsspitzen, die längerfristig zu Rissen und Brüchen führen. Baumförmige, dem Kraftverlauf folgende Stützen können maximale Spannungen und damit auch den Materialverschleiß deutlich reduzieren. Das wiederum ermöglicht Architekten, etwa den Überbau von Brücken schlanker auszuführen. Das ist nicht nur ästhetischer, sondern spart auch Material, Energie und Baukosten.

Intelligente Bauwerke reagieren auf die Umwelt

Die meisten Bauwerke sind heutzutage meist statisch und passiv, das heißt, sie können ihr Tragverhalten nicht situationsabhängig ändern. Fernziel der Baubioniker sind jedoch intelligente, aktive Tragwerke, die Umwelteinflüssen und Belastungen Rechnung tragen können. "Heutige Brücken zum Beispiel sind auf permanente Maximallast ausgelegt, wodurch das Material relativ schnell verschleißt", erläutert Schäfer. "Intelligente Brücken dagegen könnten sich der jeweiligen Situation anpassen. Sie verstärken ihren Versteifungszustand nur bei Belastung, also wenn zum Beispiel ein Zug darüber fährt", blickt Schäfer in die Zukunft. "In Phasen minimaler Beanspruchung 'entspannen' sie."

So könnten seilgestützte Brücken die Länge ihrer Trageseile mit Hilfe computergesteuerter Pressen automatisch den jeweiligen Kräften anpassen. Durch den sinkenden Materialverschleiß wäre es im Umkehrschluss auch möglich, leistungsfähigere Bauwerke wie etwa Brücken mit größeren Spannweiten zu errichten.

Tatsächlich existieren bereits einige aktive, wandelbare Bauten, wie beispielsweise bewegliche Fußgängerbrücken in Duisburg und Kiel, oder auch bewegliche Dächer von Stadien und Sporthallen. "Doch damit sich die Baubionik etablieren kann und man nicht in den Zulässigkeitskriterien der Genehmigungsverfahren gefangen bleibt, müssen auch politische Anstrengungen unternommen werden", fordert Schäfer. "Das wäre auch eine besondere Chance für die deutsche Baubranche, sich im internationalen Konkurrenzkampf zu profilieren."

Fachansprechpartner:
Prof. Stefan Schäfer, Institut für Massivbau, TU Darmstadt, Tel. 06151/16-7031, sts@massivbau.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Maximale Sonnenenergie aus der Hausfassade
23.11.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Roboterzelle bereichert Forschung zur Holzbearbeitung
17.11.2017 | Hochschule für nachhaltige Entwicklung Eberswalde

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie