Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibler Schutz für »aktive« Gebäudekomponenten und Fassaden

30.11.2016

Erfolgreicher Projektabschluss des BMBF Forschungsprojekts »flex 25« ebnet den Weg zu neuartigen Produkten aus Fluorpolymerfolien im Gebäudebereich.

Der Trend in Architektur und Gebäudewirtschaft geht zu »aktiven« Gebäuden, die sich mithilfe integrierter flexibler Elektronik verändernden Umweltbedingungen anpassen, komfortable Funktionen und Nutzkonzepte bieten und energetisch effizient sind.


Schichtaufbau des Systems

© Fraunhofer-POLO®

Beispiele dafür sind in Fassaden integrierte Solarmodule oder elektrochrome Fenster, die sich bei starker Sonneneinstrahlung von selbst verdunkeln. Herausforderungen hierbei sind die geforderte Lebensdauer der Bauelemente und ihre direkte Integration in die Gebäudehülle, besonders dann, wenn Leichtbausysteme oder flexible Membrandächer/Fassaden gefordert werden.

Im Forschungsprojekt »flex 25« konnte ein wesentlicher Fortschritt auf dem Weg zur Integration elektronischer Bauelemente in flexible, folienbasierte Gebäudehüllen erzielt werden. Ein prominentes Beispiel für eine solche Gebäudehülle ist die Fassade der Allianz-Arena in München, die aus Fluorpolymerfolien besteht.

Im Rahmen von »flex 25« wurden erstmals erfolgreich neue und kostengünstige Verfahren zur Beschichtung solcher Fluorpolymerfolien angewendet. Die Folien wurden in einem Rolle-zu-Rolle-Verfahren mit einem mehrlagigen Schichtsystem zum Schutz der Bauelemente vor Wasserdampf beschichtet und an der Wetterseite langzeitstabil optisch entspiegelt. Die Umsetzung des Rolle-zu-Rolle Verfahrens ermöglicht sehr geringe Produktionskosten und eine großflächige Funktionalisierung von Membranelementen von nahezu unbegrenzter Länge.

Flexibilität überall

In nahezu allen Lebensbereichen geht der Trend zu flexiblen elektronischen Lösungen: Angefangen beim Fitnessarmband mit biegbarem Display bis hin zur flexiblen Solarzelle als Ladestation für den Smartphone-Akku.

Im Fokus des Projektes »flex 25« stand die Überführung bestehender Vakuum- und Atmosphärenbeschichtungsverfahren auf witterungsstabile Foliensubstrate mit dem Ziel, hohe Barrierewirkung gegenüber Wasserdampf und Sauerstoff und gleichzeitig eine hohe optische Transmission der beschichteten Folie zu gewährleisten. Die so entstehende oberflächenveredelte Kunststofffolie soll zur Verkapselung von flexiblen elektronischen Bauelementen eingesetzt werden.

Mit derartigen Bauelementen lassen sich aktive Gebäudekomponenten in großflächigen Szenarien gestalten – beispielsweise zur Funktionalisierung flexibler Membrandächer von Stadien oder Veranstaltungshallen oder der Ausstattung von bereits bestehenden Gebäudefassaden oder Industriedächern mit Solarzellen. Sowohl großflächige Fassaden als auch Membrandächer erlauben aufgrund ihrer geringen Tragfähigkeit häufig keine Installation von klassischen glasverkapselten Solarmodulen. Folienbasierte Solarmodule haben ein etwa 40-fach verringertes Gewicht im Vergleich zu jenen glasverkapselten Modulen und lassen sich damit auch in Membrandächer integrieren.

Die Forscher der Fraunhofer-Institute FEP, ISC und IVV haben im Rahmen des Projektes »flex 25« eine wirtschaftlich und technologisch vorteilhafte Alternative zur Glasverkapselung entwickelt. Grundlage ist die Nutzung des Ultrabarrierekonzepts »POLO®-Hochbarriere«, das nun auf witterungsbeständige Fluorpolymer-Folien (z. B. ETFE) als Substrat übertragen werden kann. Damit können extrem wasserdampf- und sauerstoffundurchlässige Funktionsfolien für das Verkapseln von z. B. organischen opto-elektronischen Bauelementen wie organische Leuchtdioden (OLED) oder flexible organische Solarzellen im Pilotmaßstab hergestellt werden.

Barriereschichten für hohe Anforderungen

Basis der Funktionsfolien ist ein Mehrschichtaufbau aus speziellen Hybridpolymeren (ORMOCER®en) und mindestens einer Metalloxidschicht (siehe Abbildung). ORMOCER® ist der Name einer am Fraunhofer-Institut für Silicatforschung ISC entwickelten Materialklasse und kann als Lack nasschemisch in einem Rolle-zu-Rolle-Beschichtungsverfahren appliziert werden. ORMOCER®-Schichten planarisieren die raue Folienoberfläche und gleichen damit Oberflächen- und Schichtdefekte aus. Darüber hinaus haben sie gute Gasbarriereeigenschaften und schützen mit integrierten UV-Absorbern darunterliegende Schichten und das verkapselte Bauteil zusätzlich vor der schädigenden Wirkung von UV-Strahlung.

Die am Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP aufgebrachten anorganischen Metalloxidschichten sorgen in Verbindung mit den ORMOCER®-Schichten für eine ideale Barriere gegen die Diffusion von Wasserdampf und Sauerstoff zu den elektronischen Bauelementen. Die Zink-Zinn-Oxid- oder Aluminiumoxid-Schichten konnten durch Anpassen des Prozesses an die speziellen mechanischen Eigenschaften der ETFE-Folien großflächig im Rolle-zu-Rolle-Verfahren mittels reaktivem Dual-Magnetron-Sputtern im Vakuum auf die Folie appliziert werden.

Neben der Entwicklung der passenden Ausgangsschichten ist die funktionelle Beschichtung der Fluorpolymerfolien mit einem Multischichtsystem wegen der speziellen mechanischen Eigenschaften von ETFE und anderen Fluorpolymeren eine besondere Herausforderung. Viele Fluorpolymere, darunter ETFE, haben einen niedrigen Elastizitätsmodul, der eine höhere Dehnung durch die mechanische Zugbelastung des Rolle-zu-Rolle-Verfahrens hervorruft und zur Schädigung der bereits applizierten Schichten führen kann. Prozesstemperaturen von über 100 °C verstärken dieses Risiko.

An dieser Stelle hat das Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV als Spezialist für die Verarbeitung von Verpackungsmaterialien das ORMOCER®-Auftragsverfahren im Rolle-zu-Rolle-Prozess derart optimiert, dass der notwendige Trocknungsschritt bei 120 °C bei gleichzeitiger mechanischer Belastung auch auf Fluorpolymerfolien angewandt werden kann.

Gemeinsam haben die drei Fraunhofer-Institute einen robusten Fertigungsprozess entwickelt, mit dem im Pilotmaßstab konstant hochwertige Barriereschichten mit einer Wasserdampfdurchlässigkeit von 0,002 g/(m2d) bei 38 °C und 90 % Luftfeuchtigkeit auf Fluorpolymerfolien als Substrat hergestellt werden können. Diese bilden die Voraussetzung für eine lange Einsatzdauer der empfindlichen elektronischen Komponenten bei gleichbleibend hoher Leistung.

Nanostrukturierung

Neben einer guten Barrierewirkung ist insbesondere für die Frontseitenverkapselung von Solarzellen eine hohe Lichtdurchlässigkeit der Folie entscheidend. Im »flex25«-Projekt konnte dies durch eine plasmagestützte Nanostrukturierung der Oberfläche umgesetzt werden. Das Fraunhofer FEP erreichte durch Behandlung der Fluorpolymer-Oberfläche mit einem reinen Sauerstoffplasma einen kontinuierlichen Übergang des Brechungsindex – ähnlich dem Mottenaugeneffekt – und damit eine optische Entspiegelung. Mit einseitiger Entspiegelung können für eine ETFE-Folie somit maximale Transmissionswerte von mehr als 95 % erreicht werden. Eine beidseitige Entspiegelung ermöglicht theoretisch bis zu 98 % Transmission im sichtbaren Wellenlängenbereich des Lichts.

Wie geht es weiter?

Nach dem erfolgreichen Projektabschluss im April 2016 arbeitet das Fraunhofer-Team jetzt an der Überführung der Verfahren in industrielle Anwendungen. Weiterführende Fragen zur Langzeitwitterungsstabilität, Wärme-Feuchte-Beständigkeit sowie Integration der entwickelten Folie in Bauelemente sind noch zu betrachten und stellen künftige Forschungsschwerpunkte dar. Auch das Zusammenspiel zwischen Bauelement, Klebstoffen und Funktionsfolie muss noch im Detail erforscht werden um innovativen Fassaden, die großflächig Strom erzeugen, hell erstrahlen oder sich im Sommer selbst verdunkeln, einen Schritt näher zu kommen. Vielleicht können in Zukunft eine Allianz-Arena in München, ein Water Cube in Peking oder ein Khan Shatyr Entertainment Center in Astana so in nachhaltig neuem Licht erstrahlen.

Die Entwicklung wurde im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Forschungsprojekts »flex25« (Förderkennzeichen 03V0224 im Programm »Validierung des Innovationspotentials wissenschaftlicher Forschun«) realisiert.

Weitere Informationen

Fraunhofer FEP, Winterbergstr. 28, 01277 Dresden
Pressekontakt: Annett Arnold, Telefon +49 351 2586-452, annett.arnold@fep.fraunhofer.de
Wissenschaftlicher Kontakt: John Fahlteich (Flache und Flexible Produkte), Telefon +49 351 2586-136, john.fahlteich@fep.fraunhofer.de

Fraunhofer ISC, Neunerplatz 2, 97082 Würzburg
Pressekontakt: Marie-Luise Righi, Telefon +49 931 4100-150, Marie-Luise.Righi@isc.fraunhofer.de
Wissenschaftlicher Kontakt: Sabine Amberg-Schwab (Funktionelle Barriereschichten), Telefon +49 931 4100-620, sabine.amberg-schwab@isc.fraunhofer.de

Fraunhofer IVV, Giggenhauser Str. 35, 85354 Freising
Pressekontakt: Regina Walz, Telefon +49 8161 491-113, Regina.Walz@ivv.fraunhofer.de
Wissenschaftlicher Kontakt: Oliver Miesbauer (Materialentwicklung), Telefon +49 8161 491-522, Oliver.Miesbauer@ivv.fraunhofer.de

Weitere Informationen:

http://www.fep.fraunhofer.de
http://www.isc.fraunhofer.de
http://www.ivv.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik