Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt mit Empa-Beteiligung schlägt Konkurrenz: 3.8 Millionen Euro für das Fenster von morgen

31.08.2012
Das Projekt «Winsmart» hat die EU-Experten überzeugt. Sie bewerteten das von Empa-Forscher Matthias Koebel lancierte Projekt – die Entwicklung «intelligenter» Fenster für Gebäude von morgen – als besten Forschungsantrag seiner Klasse. Die acht Partner aus Forschung und Industrie erhalten mehr als 3.8 Millionen Euro Fördergeld aus dem 7. EU-Rahmenprogramm.
Mitte August unterzeichnete die Empa den Vertrag, der die Zusammenarbeit aller Beteiligten besiegelte. Koebels Team stehen nun rund 670‘000 Franken zur Verfügung. Ein ungewohnt grosser Betrag, freut sich der Empa-Forscher, denn: «Das Rennen um die begehrten Beiträge aus den EU-Fördertöpfen ist in den letzten Jahren immer härter geworden.» Im Winsmart-Projekt, das 21 Konkurrenten ausgestochen hat, werden Technologien entwickelt, die die Isolationsfähigkeit von Fenstern aus handelsüblichem Glas erhöhen und sie durch «schaltbare Gläser» funktional machen.

Ein dünnes Fenster, das dicht hält

Herkömmliche doppelverglaste Fenster bestehen aus zwei Scheiben in einem Aluminiumrahmen. Dieser Rahmen umschliesst einen 1.5 bis 2 Zentimeter dicken Hohlraum zwischen den Scheiben, der mit Silikon abgedichtet und mit Gas gefüllt ist. Das Gas verhindert die Wärmeübertragung. Die Winsmart-Forscher entwickeln eine neue Vakuumisolierverglasung, die rund dreimal dünner ist als eine herkömmliche Doppelverglasung – und trotzdem rund zwei- bis dreimal besser isoliert. Das Hochvakuum zwischen den Scheiben unterbindet die Wärmeübertragung fast vollständig. Der Abstand zwischen den beiden Gläsern beträgt dabei lediglich 0.2 bis 0.7 Millimeter und wird von einer Vielzahl winziger, zwischen den Scheiben verteilter Stützen gehalten.

Die Aluminiumrahmungen, die heute üblicherweise in der Fensterproduktion verwendet werden, würden dem atmosphärischen Druck jedoch sofort nachgeben und in den vakumierten Zwischenraum gesaugt werden. Zudem würde eine konventionelle Konstruktion den Anforderungen punkto Dichtigkeit nicht genügen. Daher musste ein robusterer Randverbund her. Im inzwischen patentierten Verfahren wird das Doppelglas in eine Vakuumkammer gefahren, in der eine flüssige Zinnlegierung als Rahmen im Randbereich zwischen die beiden Scheiben eingespritzt wird. Doch Zinn verhält sich auf Glas aufgrund unterschiedlicher Oberflächenspannungen wie Wasser auf einer neuen Regenjacke: Es perlt ab. Diesem Problem entgegnen die Forscher, indem sie den Zinnrahmen kurzzeitig einer elektrischen Spannung aussetzen. Dieser Verfahrensschritt ist nötig, damit der Rahmen am Glas haftet und nach dem Aushärten für die geforderten 30 Jahre luftdicht bleibt.

Jalousien und Rollläden bald überflüssig?

Der zweite Fokus von Winsmart richtet sich auf die Beschichtung von Scheiben; man forscht an schaltbaren Gläsern. Im so genannten Vakuum-Sputtering-Verfahren werden 100 bis 200 Nanometer dünne Schichten auf die Gläser aufgebracht. Dies geschieht ebenfalls in einer Vakuumkammer, in der die Materialien unter extremer Hitze vaporisiert und sozusagen auf die Scheibe «aufgedampft» werden. So wird eine erste, Strom leitende Schicht aufgetragen, auf die die schaltbare Schicht aus beispielsweise Wolframoxid aufgedampft wird. Auf diese schaltbare Ebene wird wiederum eine leitende Schicht aufgetragen. Die funktionale Ebene ist also immer von zwei leitenden Ebenen eingeschlossen. Per Knopfdruck fliesst Strom durch die Schichten, das Wolframoxid reagiert und das Glas verdunkelt sich. Wenn das Fenster der Zukunft die Menge des einfallenden Lichts messen kann, wird es sich selbstständig verdunkeln beziehungsweise aufhellen und den Knopfdruck überflüssig machen. Theoretisch können verschiedene Schichten übereinander aufgetragen werden, die das Glas zusätzlich noch Wasser abweisend oder kratzfest machen. Koebels Team entwickelt dafür nasschemische Verfahren, die das energieaufwändige Vakuum-Sputtering ersetzen sollen.

Massenproduktion in fünf bis zehn Jahren

Glaszuschnitt, Auftragen der schaltbaren Schichten, Randverbund unter Hochvakuum – all diese Schritte sollen in Zukunft in der Fliessbandproduktion von Fensterglas aneinandergereiht werden. In Zusammenarbeit mit den Industriepartnern wird im Projekt Winsmart auch die Produktionstechnologie vorangetrieben. Ein Knackpunkt ist zurzeit noch die Robotik, die zum Einspritzen des Flüssigmetallrahmens weiterentwickelt werden muss. Doch auch so: «In fünf bis zehn Jahren werden erste Winsmart-Fenster auf dem Markt sein», ist Koebel überzeugt.

Neben der Empa sind sieben weitere europäische Partner am Projekt «Winsmart» beteiligt:
• Technologisches Institut Dänemark DTI
• Fraunhofer-Gesellschaft, ISE & IWM, Freiburg, Deutschland
• Universität Ljubljana, Slowenien
• AGC Glass Europe, Belgien
• PhotoSolar A/S, Dänemark
• EControl-Glas GmbH & Co. KG, Deutschland
• Scandia Windows, Dänemark

Weitere Informationen
Dr. Matthias Koebel, Bautechnologien, Tel. +41 58 765 47 80, matthias.koebel@empa.ch

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Die Brücke, die sich dehnen kann
20.02.2018 | Technische Universität Wien

nachricht Zustandsmatrix zur Beurteilung des Gefahrenpotentials von Gebäuden
20.02.2018 | HIS-Institut für Hochschulentwicklung e. V.

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics