Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erdbebensichere Gebäude – auch in der Schweiz ein Thema

04.06.2010
Obwohl das Risiko starker Erdbeben in der Schweiz als mässig eingestuft wird, zeigt die Geschichte, dass grosse Beben auch hier möglich sind. Und: Nur die wenigsten Gebäude sind hier zu Lande so gebaut, dass sie dies unbeschadet überstehen würden.

Am Empa-Wissenschaftsapéro informierten Fachpersonen darüber, was getan werden kann, um Gebäude für solche Katastrophen zu wappnen.

Zunächst einmal gab es Beruhigendes zu hören. «Nicht jede Generation wird in der Schweiz von einem Erdbeben betroffen», so Donat Fäh vom Schweizerischen Erdbebendienst zur seismischen Gefährdung in der Schweiz. Trotzdem könnte sich ein grosses Beben wie 1356 in Basel oder 1855 in Visp mit einer Stärke von sieben beziehungsweise fast neun auf der Richterskala und enormen Schäden jederzeit wiederholen. Denn auch unter der Schweiz treffen tektonische Platten aufeinander und verursachen Spannung. Vor allem die Gebiete um Basel und entlang der Alpen sowie das Oberwallis sind gefährdet. Der Erdbebendienst registriert täglich mehrere kleinere Beben, die allerdings für den Menschen weder spürbar noch gefährlich sind. Doch: «Das nächste grosse Beben erwarten wir im Wallis in den nächsten 20 bis 30 Jahren», so Fäh.

Die etwa zweihundert Besucher und Besucherinnen interessierte daher natürlich vor allem die Frage, wie Neubauten, aber auch bereits bestehende Gebäude optimal geschützt werden können. «Bei einem Erdbeben wie in Visp verschiebt sich der Boden horizontal etwa zehn Zentimeter hin und her», erklärt Hugo Bachmann, emeritierter ETH-Professor und Präsident der Stiftung für Baudynamik und Erdbebeningenieurwesen. «Fundamente müssen diese Bodenbewegung mitmachen.» Sei der obere Teil eines Gebäudes aber nicht ausreichend auf ein Erdbeben ausgerichtet, komme es zum Einsturz. Um das zu verhindern, gebe es zwei Möglichkeiten. Entweder, das Gebäude zu verstärken oder zu «verweichen» – zwei komplett unterschiedliche Methoden, die aber beide funktionieren.

Verstärken oder verweichen heisst die Lösung

Beim Verstärken ist das Bauwerk gezwungen, die Bewegung des Erdbebens mitzumachen. Dazu muss das Gebäude fixiert werden, am besten mit bis zu drei Meter breiten Stahlbetonwänden, die das Gebäude asymmetrisch auf allen Seiten vom Fundament bis zum obersten Stockwerk stützen. So erhält das Gebäude genügend Stabilität, um bei einer Verschiebung des Bodens nicht einzustürzen. Denn Gefahr droht vor allem, wenn in einem Teil des Gebäudes vertikal durchgehende Mauern fehlen. So genannte «weiche Geschosse», die nur mit Pfeilern oder Stützen mehrere Obergeschosse tragen, sind bei einem Erdbeben nicht in der Lage, das gesamte Gebäude zu tragen.

Anstatt solche Gebäude komplett umzubauen, besteht laut Bachmann aber auch die Möglichkeit, das Fundament zu «verweichen». Dazu wird die Aussenwand im Kellergeschoss – also unterirdisch – horizontal aufgeschnitten, anschliessend werden im entstandenen Zwischenraum in regelmässigen Abständen weiche Gummischeiben von zirka 50 Zentimeter Durchmesser platziert. Bei einem Erdbeben werden die horizontalen Bodenbewegungen der Erdoberfläche von diesen elastischen Einlagen abgefedert, wodurch der obere Teil, also das Gebäude selbst, stabil bleibt.

Eine Entwicklung der Empa

Eine weitere, viel versprechende Möglichkeit zur Sicherung bestehender Gebäude sind kohlenstofffaserverstärkte Kunststoffe (CFK). Dieses Verfahren, das an der Empa entwickelt wurde, wird weltweit eingesetzt, um Gebäude vor Einstürzen zu schützen, erklärt Masoud Motavalli von der Abteilung «Ingenieur-Strukturen» der Empa. Die Kunststoffe werden beispielsweise in Form von Bändern um tragende Säulen befestigt, um diese zu stabilisieren. Bei einem Erdbeben drückt die Last der oberen Etagen auf die Säulen. Diese halten dem Druck häufig nicht stand, werden spröde und rissig und können brechen. Die Karbonfasern um die Säulen verhindern dies. Es entsteht eine innere Spannung in der Säule, die ihr automatisch eine höhere Stabilität verleiht und den Einsturz verhindert. Auch ganze Wände können mit dieser Methode stabilisiert werden.

Aber auch an anderen Möglichkeiten zur Erdbebensicherung von Gebäuden arbeitet Motavallis Team. Die Forschenden versprechen sich vor allem von so genannten Formgedächtnislegierungen einiges, also Materialien, die beliebig verformt werden können, bei Erhitzen aber wieder ihre ursprüngliche Form annehmen. Dadurch liessen sich unter anderem tragende Säulen verstärken. Vor allem bei einem Brand – eine häufige «Begleiterscheinung» von Erdbeben – könnten sie helfen, trotz erhöhter Hitze die Tragfähigkeit zu gewährleisten.

Dabei wäre es so einfach …

Der 43. Wissenschaftsapéro hat also gezeigt: Es existieren verschiedene, grösstenteils recht einfache Möglichkeiten, der drohenden Gefahr eines Erdbebens entgegenzuwirken, das gemäss Donat Fäh früher oder später sicher kommen wird. Kleine Veränderungen und ein minimaler Aufwand können Einstürze verhindern. Trotzdem ist heutzutage noch längst nicht jeder Neubau automatisch erdbebensicher. «Die Verbindlichkeit der Baunormen ist lasch, sie werden nicht immer eingehalten», so Hugo Bachmann. Nur in Basel und im Wallis erfolge die Durchsetzung konsequent. Dies obwohl die Sicherung eines Hauses beim Neubau finanziell kaum ins Gewicht falle. Bachmann: «Die Mehrkosten sind gering, sie betragen zwischen Null bis ein Prozent der Gesamtbaukosten.»

Weitere Informationen
Prof. Dr. Masoud Motavalli, Ingenieur-Strukturen, Tel. +41 44 823 41 16, masoud.motavalli@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Innenraum-Ortung für dynamische Umgebungen
23.03.2017 | Karlsruher Institut für Technologie

nachricht Neues Mehrfamilienhaus-Konzept vom Ökohaus-Pionier
21.03.2017 | Bau-Fritz GmbH & Co. KG, seit 1896

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen