Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Masche(n) der Simulanten

03.03.2014

Ein engmaschiges Gitternetz umgibt den Probanden, viele kleine Zellen drängeln sich nah an seinem Körper. Sie füllen den kompletten Raum aus.

Die Wissenschaftler des Fraunhofer-Instituts für Bauphysik IBP wollen es ganz genau wissen, erfassen daher jeden Millimeter. Sie kennen die exakten Maße ihrer Testperson, wissen wie diese sich in unterschiedlichen Positionen verändern.


Wie engmaschig das Gitternetz um die virtuellen Probanden, Manikins genannt, sitzt, kann hier gut erkennen. Fraunhofer IBP


Für die Simulation mittels CFD müssen alle Randbedingungen bekannt sein: Schematische Darstellung der raumklimatischen Einflussfaktoren in einem Fahrgastraum. Fraunhofer IBP

Das Gitternetz sitzt deshalb wie angegossen. Mehrere Wochen hat es gedauert bis das Netz aus bis zu einer Million Zellen und mehr um den Probanden gestrickt war. Ein Glück, dass es in diesem Fall nicht um Versuche mit einer realen Person geht, sondern um eine Simulation. CFD, die numerische Strömungsmechanik, zu Englisch Computational Fluid Dynamics, wird überall da eingesetzt, wo es um Fluide (zum Beispiel Luft, Wasser oder Öl) und die Voraussage ihres Strömungsverhaltens geht. Sebastian Stratbücker, Leiter der Gruppe Simulation am Fraunhofer-Institut für Bauphysik IBP, und seine Mitarbeiter setzen das Verfahren hauptsächlich dann ein, wenn Fragestellungen aus dem Bereich Raumklima im Fokus stehen. Meistens geht es um Luft und wie sie sich im umbauten Raum verhält. »Mit unseren Simulationen helfen wir das Raumklima für Menschen und technische Anlagen zu optimieren«, erklärt Stratbücker.

»Dafür berücksichtigen wir unter anderem Bewertungsgrößen wie die thermische Behaglichkeit, Energieeffizienz, Feuchtigkeit sowie die CO2- und Schadstoffkonzentration.«

Doch warum ist eine Simulation wie CFD überhaupt von Bedeutung? »In den meisten Fällen kann man einfach nicht nach dem Prinzip ›Trial and Error‹ vorgehen«, erläutert der Diplom-Informatiker. »Das wäre selbst im Versuchsaufbau häufig viel zu zeitaufwendig und teuer.«
Will man beispielsweise einen Neubau errichten, ist die Planungsphase entscheidend.

Die Ausführenden müssen schon im Vorhinein viele wichtige Entscheidungen treffen, wie beispielsweise welches Lüftungssystem eingebaut wird. Um beurteilen zu können, ob das System die gewünschte Leistung erbringt, dabei gleichzeitig effizient und im Bestfall kostengünstig ist, brauchen die Planer Entscheidungshilfen. CFD kann eine sein.

So lassen sich damit Räume ganz genau erfassen, hier kommt das bereits beschriebene Gitternetz zum Einsatz. So kann zu jedem Zeitpunkt, an jedem beliebigen Punkt im Raum berechnet und dargestellt werden, wie das Raumklima ist – angefangen von der Luftgeschwindigkeit, über Temperatur und Druck hin zur Luftwechselrate und der Konzentration bestimmter Stoffe in der Luft.

Dazu müssen selbstverständlich die Randbedingungen klar sein. Diese können zum Beispiel über Labor- und Feldversuche messtechnisch ermittelt werden. Zum Einsatz kommt hier auch das eigens entwickelte Messsystem DressMAN 2.0. In anderen Fällen greifen die Wissenschaftler des Fraunhofer IBP auf eigene Datenbanken für bauphysikalische Kenngrößen, Konstruktionstypen, Gebäudetechnik und Nutzungsprofile zurück. Weitere Daten sammeln sie durch die Planungen ihrer Kunden.

Auf diese Weise erfasst das Rechenprogramm Größen wie die Geometrie des betreffenden Raumes mitsamt der Luftein- und -auslässe, den Luftaustausch zwischen Umwelt und Innenraum, die Heiz- und Kühlleistung des verwendeten Systems, die Nutzungszeiten des Raumes, welche Materialien dort verbaut werden und vieles mehr. Sogar die physikalischen Eigenschaften der Fenster oder die Art der Bekleidung der Gebäudenutzer werden bei Bedarf berücksichtigt. »Natürlich ist auch CFD aufwendig, dennoch lohnt es sich im Vergleich zum Trial-and-Error-Prinzip. Denn dadurch können Fehler bereits von Anfang an vermieden werden«, erklärt der Informatiker und ergänzt: »In dem wir verschiedene Szenarien durchspielen, können wir unterschiedliche Lösungsvorschläge ausarbeiten und analysieren. So kommen wir letztlich zu einem optimalen Systementwurf.«

Natürlich gilt das nicht nur für die Planungsphase von Neubauten. Auch für bereits bestehende Gebäude setzen die Fraunhofer-Forscher CFD ein, um Lösungsansätze für aufgetretene Probleme aufzuzeigen und zu entwickeln.

Zudem beschränkt sich diese Strömungssimulation nicht ausschließlich auf Gebäude, auch im Fahr- und Flugzeugbereich arbeiten Stratbücker und sein Team mit CFD. Untersuchungen im weltweit einzigartigen Fluglabor des Fraunhofer IBP (Flight Test Facility, FTF) bilden einen wesentlichen Teil der Validierungsarbeit für die Simulation. Im Gegenzug nutzen die Forscher CFD auch einmal außerhalb des für das Fraunhofer IBP klassischen Einsatzbereiches der Simulation von Luftströmungen. Bevor im vergangenen Jahr die neue Ground Thermal Test Bench im Fluglabor in Betrieb genommen wurde, mussten zahlreiche Komponenten des Systems optimiert werden.

Um beispielsweise im so genannten AirCraft Calorimeter (ACC) extremste Bedingungen wie Thermal Shock, das heißt schnelle Temperaturveränderungen, simulieren zu können, mussten die Kühl- sowie die Heizfunktion entlang der Flugzeugaußenhaut reibungslos funktionieren. So haben die Mitarbeiter der Gruppe Simulation den Kühlmitteltank der Ground Thermal Test Bench und den Kreislauf des Kühlmittels darin mittels CFD so optimiert, dass die Flüssigkeit exakt auf die erforderliche Temperatur herunter gekühlt wird, bevor sie wieder zum Flugzeug geleitet wird.

Somit profitieren nicht nur große Elemente, wie ganze Räume, sondern auch einzelne Komponenten, beispielsweise eines Lüftungssystems, von dieser Strömungssimulation. »CFD wird immer dann eingesetzt, wenn man nicht genau weiß, ob ein System so funktioniert wie man es sich denkt«, sagt Stratbücker. »Allerdings arbeiten wir je nach Fragestellung auch mit anderen Verfahren.« PIV, Particle Image Velocimetry, zum Beispiel dient dazu, Strömungsfeldgeschwindigkeiten zu messen und zu visualisieren. Dadurch hilft die Methode im Falle von CFD dabei deren Ergebnisse an kritischen Stellen zu überprüfen.

Für eine schnelle Abschätzung von Strömungsverhältnissen und Temperaturverteilungen im Innenraum haben IBP-Wissenschaftler das so genannte VEPZO-Modell (VElocity Propagating ZOnal Model) entwickelt, mit dem sich Lüftungskonzepte bewerten und lokal aufgelöst visualisieren lassen. »Das setzen wir ein, wenn Luft-Knoten-Modelle zu einfach sind und CFD wiederum zu aufwendig. Mit VEPZO können wir relativ rasch darstellen, was zum Beispiel der geschickte Einsatz von Pflanzen oder eine anwesenheitsorientierte Heizung in einem Raum bringen.«

Auf einige spannende, neue Projekte, bei denen CFD eingesetzt wird, freuen sich Sebastian Stratbücker und seine Mitarbeiter bereits. In alten Kirchen zum Beispiel stellt die Beheizung oft ein großes Problem dar. Meist werden die Heizungen nur temporär genutzt und die Wärme verpufft in den großen Räumen. »Wäre das System auf den Bedarf und lokal auf den Benutzer ausgerichtet, ließe sich eine große Kirche nutzergerecht heizen, ohne zu viele Wärmeverluste hinnehmen zu müssen. Wie das funktionieren kann, lässt sich mit CFD simulieren.«

Weitere Informationen:

http://www.ibp.fraunhofer.de/de/Presse_und_Medien/Forschung_im_Fokus.html

| Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Holzhäuser bei grauer Energie im grünen Bereich
22.06.2017 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Wie Menschen Schäden an Gebäuden wahrnehmen
22.06.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie

Digitalanzeige mit Touchscreen WAY-AX & WAY-DX von WayCon

27.06.2017 | Energie und Elektrotechnik

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie