Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Brücke, die sich dehnen kann

20.02.2018

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort eingebaut werden muss, weil sich die Brücke je nach Temperatur ausdehnt und zusammenzieht.


Satzengrabenbrücke - Österreichs längste integrale Brücke

TU Wien

Gerade diese Fugen sind teuer und wartungsintensiv. An der TU Wien wurde daher eine Brückenvariante entwickelt, bei der auf diese Dehnfugen verzichtet wird. Die Technik wurde von der ASFINAG beim Bau der Satzengrabenbrücke an der Nordautobahn erstmals eingesetzt. Nun hat die dehnfugenlose Brücke ihren ersten Winter überstanden. Die Messergebnisse zeigen, dass die neue Technik bestens funktioniert.

Drohende Winterschäden

„Kleinere Distanzen überbrückt man gerne mit sogenannten integralen Brücken – das sind monolithische Bauwerke, bei denen es keine getrennten Teile gibt, die sich gegeneinander verschieben könnten“, erklärt Prof. Johann Kollegger vom Institut für Tragkonstruktionen der TU Wien. Bei längeren Brücken ist das normalerweise nicht möglich, denn der Beton kann sich abhängig von der Temperatur ausdehnen oder zusammenziehen.

Bei einer Brücke mit einer Länge von 100 Metern ergeben sich schon einige Zentimeter Längenunterschied zwischen Sommer und Winter, rechnet Kollegger vor – und das ist zu viel. Besonders im Winter, wenn sich der Beton zusammenzieht, können schwere Schäden in der Asphaltfahrbahn entstehen. Im Sommer ist die Gefahr geringer, weil das Material bei höheren Temperaturen formbarer wird.

Mit Dehnfugen lässt sich das Problem beheben: Die Brücke besteht dann aus mehreren Teilen, die sich in einem gewissen Ausmaß frei gegeneinander verschieben können – doch diese Dehnfugen sind ein typischer Schwachpunkt moderner Brückenbauten. Sie brauchen immer wieder Wartung, müssen manchmal ausgetauscht werden, und sind die Ursache für etwa 20% der Brücken-Instandhaltungskosten. „Da sind allerdings die volkswirtschaftlichen Schäden noch gar nicht mitberücksichtigt, die durch Umleitungen, Staus und Verkehrsbehinderungen anfallen“, fügt Kollegger hinzu.

Wie Perlen auf der Gummischnur

Daher entwickelte man an der TU Wien eine Alternative: Statt die Verformung in einzelnen Fugen am Anfang und am Ende der Brücke aufzunehmen, verteilt man die Verformung auf einen größeren Bereich. 20 bis 30 Betonelemente werden hintereinander aufgereiht und mit Seilen aus einem speziellen Glasfaser-Werkstoff miteinander verbunden.

Die Konstruktion ähnelt einer Kette von Perlen, die auf einem Gummiband aufgefädelt sind: Wenn daran gezogen wird, erhöht sich der Abstand zwischen allen Perlen gleichmäßig im selben Ausmaß. Wenn sich die Brücke im Winter verkürzt, entstehen zwischen benachbarten Betonelementen kleine Spalten – allerdings nur im Millimeterbereich, sodass diese keine Gefahr für die Asphaltfahrbahn darstellen.

Der fugenlose Fahrbahnübergang wurde von der Tu Wien, mit Unterstützung durch ihre Abteilung „Forschungs- und Transfersupport“ patentiert. Maßgeblich beteiligt an der Entwicklung war auch Dr. Bernhard Eichwalder, der mehrere Jahre lang im Team von Johann Kollegger forschte und im Jahr 2017 den FSV-Preis für seine Dissertation erhielt.

Wichtig war außerdem, eine passende Asphaltmischung zu entwickeln, mit der man die Betonelemente bedecken kann. Sie muss flexibel genug sein, um die millimeterkleinen Bewegungen mitzumachen, ohne dabei rissig zu werden. Diese Aufgabe übernahm das Team von Prof. Ronald Blab vom Institut für Verkehrswissenschaften der TU Wien.

Pilotprojekt in Niederösterreich

Die Autobahnen- und Schnellstraßen-Finanzierungs-AG ASFINAG war von Beginn an am Projekt beteiligt und war somit auch der erste Bauträger, der die neuen Erkenntnisse umsetzen durfte: Als Teil der Nordautobahn A5 zwischen Schrick und Poysbrunn im Norden Niederösterreichs wurde die 112 Meter lange Satzengrabenbrücke errichtet – die nun längste integrale Brücke Österreichs.

Nachdem es sich um ein erstes Pilotprojekt handelte, entschied man sich dafür, ein umfangreiches Monitoringprogramm zu installieren. So können wertvolle Erfahrungen gesammelt werden. Nun, nachdem die kälteste Zeit des Jahres vorüber ist und die Daten ausgewertet wurden, lässt sich eine positive Bilanz ziehen:

„Unsere theoretischen Berechnungen zur Aufteilung der Verformungen auf die einzelnen Betonelemente konnten durch die Messungen bestätigt werden“, berichtet Dr. Michael Kleiser, der zuständige Experte für Brückenbau bei der ASFINAG. So steht nun dem Einsatz der neuen Technik für weitere Brückenbauten nichts mehr im Weg. Das Team hofft, dass sich die neue Methode nicht nur in Österreich sondern auch in anderen Staaten bald durchsetzt.

Kontakt:
Prof. Johann Kollegger
Institut für Tragkonstruktionen
Technische Universität Wien
T: +43-1-58801-21202
johann.kollegger@tuwien.ac.at

Dr. Bernhard Eichwalder
Institut für Tragkonstruktionen
Technische Universität Wien
Retter & Partner
Ziviltechniker Ges.m.b.H.
T: +43-676-9735072
eichwalder@ib-retter.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2018/integralbruecke weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht BAUFRITZ-Musterhaus - Tradition im hier und jetzt: Heimat 4.0
07.05.2018 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Gute Raumakustik in Arbeitsumgebungen: Konzentrierter arbeiten im Büro
02.05.2018 | Fraunhofer-Institut für Bauphysik IBP

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics