Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beton im Härtetest - robust und säureunempfindlich wie Keramik?

09.04.2010
Beton mit alkalisch angeregten Bindemitteln so robust und säureunempfindlich wie Keramik zu machen, ist Ziel eines auf drei Jahre angelegten Kooperationsprojekts von Forschern der Universität Kassel

Beton mit alkalisch angeregten Bindemitteln so robust und säureunempfindlich wie Keramik zu machen, ist Ziel eines auf drei Jahre angelegten Kooperationsprojekts von Forschern der Universität Kassel. So sollen dem Beton weitere Einsatzmöglichkeiten in der Industrie eröffnet werden. Dabei soll Hüttensand, ein Abfallprodukt der Roheisenproduktion und Flugasche, ein Abfallprodukt aus Kohlekraftwerken, den Zement als Bindemittel ersetzen. Die Herstellung von Zement gilt als klimaschädlich.

Die Betonherstellung steigt weltweit, vor allem in aufstrebenden Schwellenländern wie China. Überall, wo neue Brücken, Straßen, Gebäude oder Kanäle gebraucht werden, wird Beton als relativ preiswerter Baustoff eingesetzt. Doch er hat gegenüber anderen Materialien wie beispielsweise Kunststoff einen Nachteil: Wenn er heftigen chemischen Angriffen von Säuren, Chloriden oder Sulfaten ausgesetzt ist, fängt er an zu bröseln. Silage- und Güllebehälter aus Beton etwa müssen daher über kurz oder lang erneuert werden, weil dort Milchsäure den Baustoff nach und nach zerstört. Auch industrielle Abwässer, die einen Säuregehalt mit einem pH-Wert

Der Grund dafür ist, dass handelsüblicher, mit Portlandzement angemischter Beton nach dem Abbinden viele Poren aufweist, in die später die Säure eindringen kann. Außerdem besteht dieser Zement fast zur Hälfte aus Kalk (Calciumoxid), der mit Säuren und anderen aggressiven Chemikalien reagiert und damit die feste Struktur des Betons aufweicht.

Am Institut für konstruktiven Ingenieurbau (Fachgebiet Werkstoffe des Bauwesens und Bauchemie) des Fachbereichs Bauingenieurwesen arbeiten die Forscher unter der Leitung des Akademischen Oberrats Dr. rer. nat. Dietmar Stephan seit Mitte 2009 an einer neuen Rezeptur, die den Beton widerstandsfähig gegen diese chemischen Angriffe machen soll. Der Forschungsansatz des Diplom-Chemikers: Hüttensand, ein Abfallprodukt der Roheisenproduktion, und Flugasche, ein Abfallprodukt aus Kohlekraftwerken, ersetzten den in seiner Herstellung für das Klima schädlichen Zement als Bindemittel für den Beton. Das Gemisch aus gemahlenem Hüttensand und Flugasche wird dabei mit alkalischen Stoffen wie beispielsweise wasserlöslichen Natrium- oder Kaliumsilicaten (so genanntes Wasserglas) zur Reaktion angeregt und verbindet die übrigen Inhaltsstoffe des Betons. "Wasserglas löst, bindet und verdichtet", beschreibt Dr. Stephan die Vorzüge des chemischen "Katalysators".

Diese Rezeptur, ist vor allem in Kombination mit dem an der Universität Kassel entwickelten ultrahochfesten Beton (UHPC) erfolgreich: Die in diesem Beton "dicht gepackten" Nanoteilchen, die bis zu 1000-mal kleiner als der Durchmesser des menschlichen Haars sind, füllen dabei die Lücken zwischen den gröberen Bestandteilen und sorgen dabei für ein äußerst dichtes Gefüge. Die Grundidee zu diesen Arbeiten hat Dr. Stephan bereits im Rahmen seiner kurz vor dem Abschluss stehenden Habilitation entwickelt.

Mit der alkalisch angeregten Mischung wird eine kristalline, optimal ineinander verzahnte Struktur des Betons erreicht, die an ihrer Oberfläche unter dem Rasterelektronenmikroskop fast keine Poren mehr erkennen lässt. Aggressive Chemikalien haben dann keine Chance mehr, einzudringen.

Säurestress im Dauerbad
Momentan unterzieht der Wissenschaftler mit seinen Mitarbeitern die Proben des neu entwickelten Betons im Säurebad einem Dauer-Stresstest. Die Proben werden einem konstanten pH-Wert von 2,1 ausgesetzt. So ein saures Milieu muss Beton in der Praxis kaum aushalten. "Wir gehen in die Extreme", sagt Dr. Stephan. In gut zwei Jahren wolle der Abwasserverband Emscher ein Rohr mit dem Spezialbeton aus Kassel in der Praxis testen, sagt der Wissenschaftler. Er sieht vor allem wirtschaftliches Potential, wenn man die neue Mischung als Spritzmörtel einsetzt. Damit könnte man Faultürme von Klärwerken oder Kühltürme von Kraftwerken nachträglich mit einer Schutzschicht versehen und so deren Lebensdauer preisgünstig verlängern, sagt Dr. Stephan.

Die Arbeit der Kasseler Wissenschaftler ist in das vom Bundesministerium für Forschung und Bildung auf drei Jahre angelegte und mit 3,8 Millionen Euro geförderte Projekt "Kalt härtende Keramik" eingebettet. An die Kasseler Universität fließen über 500.000 Euro. Kooperationspartner sind unter anderem das Fraunhofer-Institut für Silicatforschung, der Verein Deutsche Zementwerke sowie mehrere Industriepartner.

Info
Dr. rer. nat. Dietmar Stephan
tel (0561) 804 2603
e-mail dietmar.stephan@uni-kassel.de
Universität Kassel
Fachbereich Bauingenieurwesen
Fachgebiet Werkstoffe des Bauwesens und Bauchemie
Mönchebergstraße 7
34125 Kassel

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Beton Flugasche Härtetest Hüttensand Keramik Kohlekraftwerk Roheisenproduktion Säure Zement

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie