Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Weinreben an Krebs leiden

04.03.2013
Krebserregende Bakterien befallen auch Weinreben und andere Pflanzen. Sie verändern das Erbgut ihrer Wirte in einer Weise, die komplexer ist als bislang gedacht. Das berichtet eine Würzburger Forschungsgruppe im Journal PLoS Genetics.

Bei Weinreben ist es die Maukekrankheit, bei Zuckerrüben der Wurzelkropf: Krebsartige Wucherungen an Pflanzen werden häufig durch das Bodenbakterium Agrobacterium tumefaciens verursacht.


Tumor an einem Rebstock (unten links), der dadurch kümmerlicher wächst als die Nachbarrebstöcke (oben links). Auf der rechten Seite ist ein Tumor zu sehen, der unter Laborbedingungen an der Modellpflanze Arabidopsis thaliana erzeugt wurde. Die Tumore und ihre Position an den Pflanzen sind rot eingerahmt.
Grafik: Rosalia Deeken

Im Wein- und Obstbau ist das ein Problem: Die erkrankten Pflanzen wachsen nicht mehr richtig, was zu erheblichen Ertragseinbußen führen kann. Im schlimmsten Fall sterben die Pflanzen sogar ab.

Meist dringen die Tumorbakterien an der Wurzel oder in Bodennähe am Stängel in die Pflanzen ein. Dann bringen sie deren Zellen dazu, sich unkontrolliert zu teilen – so entstehen Wucherungen, die den Bakterien einen geschützten Lebensraum bieten. Die Erreger zwingen die Pflanzenzellen sogar dazu, spezielle Nährstoffe für sie zu produzieren.

Wie genau manipulieren die Schadbakterien die Pflanzen auf der Ebene der Gene? Welche molekularen Mechanismen verändern die Ausprägung der infizierten Zellen? Das untersucht Dr. Rosalia Deeken mit ihrer Arbeitsgruppe, allen voran mit dem Doktoranden Jochen Gohlke, am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg.

Komplexe Veränderungen an der Pflanzen-DNA

„Verblüffend ist vor allem, auf welch komplexe Weise die Bakterien die Pflanzenzellen umsteuern“, sagt Deeken. Die Erreger schleusen zum einen ihr Erbgut in die DNA der Wirtspflanze ein – das ist seit Langem bekannt. Die Würzburger Forschungsgruppe hat jetzt herausgefunden, dass die Bakterien noch für weitere Veränderungen an der DNA der Pflanzenzellen sorgen.

Verändert sind genau die Bereiche der Pflanzen-DNA, die für die Zellteilung essenziell sind. Das dürfte das unkontrollierte Wachstum des Pflanzentumors fördern und die Lebensbedingungen für die Bakterien verbessern. Die Modifikationen betreffen das Methylierungsmuster – das ist die Art und Weise, wie die DNA mit kleinen Kohlenwasserstoff-Elementen (Methylgruppen) bestückt ist. Methylierung kommt bei allen Organismen vor, das Muster ist aber variabel. Sie dient unter anderem dazu, bestimmte DNA-Abschnitte an- oder abzuschalten.

Methylierung begrenzt das Tumorwachstum

Deeken und ihr Team sind dieser Sache weiter auf den Grund gegangen – mit Mutanten der molekulargenetischen Modellpflanze Arabidopsis: „Das Erbgut der Mutanten ist nicht so stark methyliert wie im Normalfall“, erklärt die Wissenschaftlerin. „Als wir sie mit Agrobakterien infizierten, wuchsen die Tumore bei den Mutanten viel stärker als bei normalen Vergleichspflanzen.“

Darum das Fazit der Forscher: „Die Methylierung ist bei Pflanzen offenbar ein Mechanismus, der das Wachstum von Tumoren nicht verhindern, aber begrenzen kann.“ Dieses Ergebnis ihrer Arbeit haben die Würzburger Biologen Anfang Februar im Journal „PLoS Genetics“ veröffentlicht.

Entstanden ist die Publikation in Zusammenarbeit mit Claus-Jürgen Scholz vom Würzburger Interdisziplinären Zentrum für Klinische Forschung. Das hat seinen Grund: Die Methylierung und andere sogenannte epigenetische Veränderungen sind auch beim Menschen an der Entstehung von Tumoren beteiligt. Sie werden darum im Hinblick auf die Diagnose und Therapie verschiedener Krebsarten erforscht.

Nächste Schritte der Forschungsarbeit

Welcher molekulare Mechanismus der Methylierung läuft in den Pflanzentumoren ab? Und warum schafft es die Pflanze in diesem speziellen Fall nicht, das von den Tumorbakterien eingeschleuste Erbgut mittels Methylierung zu inaktivieren? Das sind die Fragen, mit denen sich Rosalia Deekens Team derzeit befasst.

Schnelltest für den Weinbau geplant

Deeken will außerdem zusammen mit der Würzburger Mikrobiologie-Professorin Ute Hentschel-Humeida einen Schnelltest zur Diagnose der Maukekrankheit bei Weinreben entwickeln. Grund: Mit bloßem Auge ist diese Tumorkrankheit bislang nicht von harmlosen Gewebewucherungen zu unterscheiden, wie sie oft nach Verletzungen oder an der Veredelungsstelle der Reben auftreten. Der Schnelltest soll es Winzern ermöglichen, befallene Reben rechtzeitig zu entfernen – eine andere Bekämpfung der Krankheit ist bisher nicht möglich.

Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R: “DNA methylation mediated control of gene expression is critical for development of crown gall tumors”, PLoS Genet. 2013 Feb;9(2):e1003267. doi: 10.1371/journal.pgen.1003267

Kontakt

Dr. Rosalia Deeken, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T (0931) 31-89203, deeken@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise