Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielfalt in der Monokultur

15.04.2015

Unterschiedliche Eigenschaften innerhalb einer Art sichern deren Überleben und verbessern die Gesamtproduktivität eines Ökosystems. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena konnten in Freilandexperimenten mit Pflanzen der wilden Tabakart Nicotiana attenuata nachweisen, dass es ausreicht, in einzelnen Pflanzen die Aktivität bestimmter Abwehrgene zu verändern, um die Population zu schützen und die Vielfalt im gesamten Ökosystem zu beeinflussen.

In der modernen, maschinengerechten Landwirtschaft überwiegen Monokulturen. Auf großen Flächen wird nur ein einziger Genotyp einer Nutzpflanzenart angebaut. Verwendet werden Züchtungen, die auf hohe Erträge optimiert sind und nicht selten nur noch wenige natürliche Pflanzenabwehrstoffe enthalten. Leider können großflächige Monokulturen mit identischen Pflanzen eine ökologische Wüste hinterlassen und das Ökosystem nachhaltig schädigen, insbesondere wenn flächendeckend Dünger und Pestizide verwendet werden müssen. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena konnten in Freilandexperimenten mit Pflanzen der wilden Tabakart Nicotiana attenuata nachweisen, dass es ausreicht, in einzelnen Pflanzen die Aktivität bestimmter Abwehrgene zu verändern, um die Population zu schützen und die Vielfalt im gesamten Ökosystem zu beeinflussen. (eLife, April 2015)


Versuchsanordnung mit Populationen von Pflanzen, deren Abwehrgene unterschiedlich ausgeprägt waren.

Meredith Schuman / Max-Planck-Institut für chemische Ökologie / eLife

Der Begriff Biodiversität wird im deutschen Sprachraum gern als Synonym für Artenvielfalt verwendet. Dies stimmt jedoch nicht ganz, denn außer der Vielfalt verschiedener Pflanzen- und Tierarten schließt der Begriff auch Variationen innerhalb einer Art ein. Wie gut eine Pflanze gedeiht, wie sie sich an ihre Umgebung anpasst und mit klimatischen Bedingungen oder natürlichen Feinden zurechtkommt, kommt auf ihre Gene an. Was jedoch ein einzelnes Gen in der Pflanze bewirkt, hängt wiederum weitgehend davon ab, wo und wie die Pflanze lebt: einzeln, in dichten Populationen, inmitten oder am Rande solcher Populationen, in welchem Lebensraum. Bei im Durchschnitt etwa 30.000 Genen, die zu verschiedenen Zeitpunkten oder unter wechselnden Bedingungen unterschiedlich aktiv sind, entsteht aufgrund der Variabilität in der Genaktivität eine unendliche Vielfalt an möglichen Kombinationen innerhalb einer einzelnen Art.

Die Projektgruppe „Ökologische Funktionen pflanzlicher Sekundärmetaboliten“ unter der Leitung von Meredith Schuman, die mit dem Deutschen Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig assoziiert ist, untersucht nun genau die Vielfalt dieser Kombinationen in genetisch nahezu identischen Pflanzen. Dabei nutzten die Forscher die Tabakpflanze Nicotiana attenuata. Diese wilde Tabakart, auch Kojotentabak genannt, besitzt vielfältige und ausgeklügelte Verteidigungsmechanismen, mit der sie sich gegen Fraßfeinde zur Wehr setzt. Große Teile des Genoms dieser Pflanze sind bereits entschlüsselt worden.

Für ihre Experimente verwendeten die Wissenschaftler um Meredith Schuman Tabakpflanzen, in denen die Ausprägung bestimmter Abwehrgene, LOX2, LOX3 und TPS10, verändert worden war. Diese drei Gene vermitteln wichtige direkte (LOX3) und indirekte Verteidigungsmechanismen (LOX2, LOX3 und TPS10). Durch das Ausschalten oder das Überaktivieren dieser Gene in unterschiedlichen Kombinationen erhielten die Wissenschaftler Pflanzen, die nur aufgrund der unterschiedlichen Genexpression höchst unterschiedlich verteidigungsbereit waren.

Zu den indirekten Abwehrstrategien der Tabakpflanzen gehören beispielsweise Pflanzenduftstoffe, deren Funktion darin besteht, Raubinsekten Informationen über die Anwesenheit von pflanzenfressenden Insekten zu übermitteln. Aufgrund dieser Duftinformationen können die Räuber ihre Beute leichter finden, und die Pflanzen können sich ihrer Fraßfeinde entledigen. Da diese Duftstoffe über größere Entfernungen getragen werden, kann die gesamte Nachbarschaft von den angelockten Räubern profitieren, auch wenn nur einzelne Pflanzen diesen Duft abgeben. „Variationen einzelner Pflanzengene haben also Auswirkungen auf die gesamte Pflanzenpopulation, wenn diese Gene wichtige ökologische Funktionen erfüllen“, erläutert Meredith Schuman.

Die in ihrer Genausprägung veränderten Pflanzen wurden in Gruppen zusammen mit Wildtyppflanzen an ihrem natürlichen Standort in der Great Basin Desert im US-amerikanischen Bundesstaat Utah ausgepflanzt und über einen längeren Zeitraum kontrolliert. Dabei fiel den Forschern auf, dass sich je nach Kombination der Pflanzen die Populationen von pflanzenfressenden Insekten und deren natürlichen Feinden im Umfeld und auf den Pflanzen veränderte. Diese Veränderungen betrafen fast immer die gesamte Pflanzengruppe und nicht nur einzelne Pflanzen.

Wie so oft kam es bei den Freilandexperimenten auch zu überraschenden Beobachtungen. In der Nachbarschaft von Pflanzen, die TPS10 bildeten, bewirkte die Produktion des Abwehrstoffes trans-α-Bergamoten (TAB), der eigentlich die Feinde der Fraßfeinde anlockt, dass sich der Befall durch den stängelfressenden Rüsselkäfer Trichobaris mucorea − dessen Larven innerhalb der Stängel, also geschützt vor möglichen Raubinsekten leben − mehr als verdoppelte. „Diese Beobachtung zeigt, dass Info-Moleküle zweischneidige Schwerter sein können“, meint Ian Baldwin, Direktor der Abteilung Molekulare Ökologie und Pionier der ökologischen Genforschung. „Sie nutzen der Pflanze, wenn sie räuberische Insekten zu Hilfe holen, schaden ihr aber, wenn der Duft gleichzeitig Fraßschädlinge wie den Rüsselkäfer anlockt. Deshalb produzieren Pflanzen in der Regel den chemischen Hilferuf nur bei Befall durch Schädlinge, wenn sie deren Feinde anlocken wollen.“

Insgesamt ist nach Ansicht der Wissenschaftler die Vielfalt der Genausprägungen im Hinblick auf Ökosystemdienstleistungen durchaus vergleichbar mit der Artenvielfalt in einem Lebensraum. „Funktionelle Vielfalt bedeutet nichts anderes als die Fähigkeit verschiedener Individuen einer Art, unterschiedliche ökologische Aufgaben zu übernehmen. Wenn alle das Gleiche tun, wird das Überleben der Art gefährdet. Wir reden hier also von der Darwin’schen Fitness, der erfolgreichen Fortpflanzung innerhalb einer Art“, erklärt Ian Baldwin.

Die Forscher gehen noch einen Schritt weiter und weisen darauf hin, dass sich ihre Erkenntnisse für die moderne Landwirtschaft nutzen lassen. „Wenn man die Genausprägung einzelner Gene in nur wenigen Pflanzen einer Monokultur verändert, wird das gesamte Feld geschützt“, meint Meredith Schuman. „Damit hätten wir eine wirtschaftlich vertretbare Methode, einige der verlorenen Vorteile biologischer Vielfalt für ehemals artenreiche Lebensräume wiederzugewinnen, die in landwirtschaftliche Monokulturen umgewandelt wurden“.

Die Weltbevölkerung von derzeit über 7,2 Milliarden Menschen wird nach Schätzungen der Vereinten Nationen bis zum Ende des Jahrhunderts auf etwa zehn Milliarden anwachsen und all diese Menschen müssen ernährt werden. Der Bedarf an Nahrung wird mit wachsender Bevölkerungszahl stetig steigen. Grundlegende Erkenntnisse der ökologischen Pflanzenforschung über die Auswirkungen genetischer Merkmale in ihren verschiedenen Ausprägungen können dazu beitragen, landwirtschaftlich brauchbare Nischen nachhaltiger zu nutzen und sie den jeweils gegebenen landschaftlichen Verhältnissen besser anzupassen. [AO]

Originalveröffentlichung:
Schuman, M. C., Allmann, S., Baldwin, I. T. (2015). Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. eLife, 4, e04490, doi: doi:10.7554/elife/04490
http://dx.doi.org/10.7554/elife/04490


Weitere Informationen:
Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1101, baldwin@ice.mpg.de
Meredith C. Schuman, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1116, mschuman@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de
Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/itb-research.html?&L=1 (Forschung in der Abteilung Molekulare Ökologie)
http://www.ice.mpg.de/ext/1041.html?&L=1 ("Pionier der ökologischen Genforschung", Pressemeldung vom 6.9.2013)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE