Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viel zu groß und dazu noch kompliziert?

16.06.2011
Erfolgreiche Strategie zur Entschlüsselung komplexer Getreidegenome entwickelt

Einer internationalen Forschungsgemeinschaft unter der Leitung von Dr. Nils Stein, Arbeitsgruppenleiter am Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben, gelang nach zweijähriger Arbeit erstmalig der genomweite Einblick in die ökonomisch und wissenschaftlich wichtige Getreidesorte Gerste.

Die Wissenschaftler etablierten eine Strategie, mit der sie bereits jetzt die Anordnung von etwa zwei Drittel aller Gene in Gerste bestimmen konnten. Diese dient nun als Grundlage für die vollständige Entschlüsselung des Gersten- und des nahe verwandten Weizengenoms. Nach Informationen der Welternährungsorganisation nehmen Weizen und Gerste weltweit Platz eins und fünf der meistgeernteten Nutzpflanzen weltweit ein.

Nur wenn Wissenschaftler den genetischen Code einer Pflanze kennen, können sie die molekularen Mechanismen verstehen, die für die Ausprägung komplexer Eigenschaften verantwortlich sind. Der genetische Code bildet auch die Grundlage für weitgehende Züchtungsvorhaben, die bedeutende agronomischer Eigenschaften wie Trockentoleranz und Resistenzen einer Pflanze verbessern.

Die Größe und der komplizierte Aufbau der Getreidegenome erschwerten bisher deren vollständige Entschlüsselung. „Das Gerstengenom ist etwa zweieinhalb mal so groß wie das menschliche Genom und entspricht ungefähr zwölfmal dem Reisgenom, für dessen Entschlüsselung etwa 100 Millionen US-Dollar benötigt wurden“, verdeutlicht Dr. Nils Stein die Größenverhältnisse. Die an Gerste erfolgreich erprobte Strategie setzen Wissenschaftler bereits auch beim wesentlich größeren Weizengenom ein. Aufgrund der Ähnlichkeit vieler Getreidesorten werden die Forscher auch die Beziehungen zwischen den genetischen Informationen und den Merkmalsausprägungen auf andere verwandte Getreidearten wie beispielsweise Roggen übertragen können.

Gefördert werden die Arbeiten mit 6,8 Mio. Euro durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des nationalen Verbundprojekts zur Pflanzenforschung GABI-Future.

Vollständige Veröffentlichung:
Klaus F.X. Mayer et al. (2011): Unlocking the Barley Genome by Chromosomal and Comparative Genomics; The Plant Cell Online 23:1249-1263; DOI: 10.1105/tpc.110.082537
Hintergrundbericht:
Auf Pflanzenforschung.de „Dem Genom der Gerste auf der Spur“
Kontakte
Dr. Nils Stein, Koordinator des Sequenzierkonsortiums
Leibniz-Institut für Pflanzengenetik und
Kulturpflanzenforschung (IPK)
Gatersleben
Tel.:+ 49 (0)3 94 82-55 22
Fax:+49 (0)3 94 82-55 95
E-mail: stein@ipk-gatersleben.de
Dr. Dirk Büssis, Leiter der Geschäftsstelle Pflanzenforschung
Pflanzenbiotechnologie der Zukunft
c/o Max-Planck-Institut für Molekulare Pflanzenphysiologie
Am Mühlenberg 1
14476 Potsdam
Tel.: +49-(0)331-567 83 01
Fax: +49-(0)331-567 89 83 01
E-mail: buessis@mpimp-golm.mpg.de
Über das IPK Gatersleben
Das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben ist eine außeruniversitäre, mit Bundes- und Ländermitteln geförderte Forschungseinrichtung und Mitglied der Leibniz-Gemeinschaft, einem Zusammenschluss von 87 Forschungsinstituten und Serviceeinrichtungen für die Forschung in Deutschland. Am IPK forschen und arbeiten etwa 500 Mitarbeiter/-innen aus über 20 Nationen. Weitere Informationen zum IPK.
Über Pflanzenbiotechnologie der Zukunft/ GABI-FUTURE
Die Fördermaßnahme „Pflanzenbiotechnologie der Zukunft“ baut auf den Ergebnissen des Genomforschungsprogramms GABI auf. Wie dieses wird es im Rahmen einer "Public-Private-Partnerschaft" durch das Bundesministerium für Bildung und Forschung (BMBF) und der Privatwirtschaft finanziert. Zahlreiche Unternehmen von Familienbetrieben bis zu globalen Playern beteiligen sich weit über ein finanzielles Engagement hinaus aktiv an Forschungs- und Entwicklungsprojekten. Das Deutsche Pflanzenforschungsprogramm steht als Leuchtturm auch für eine international erfolgreiche europäische und transatlantische Zusammenarbeit.

Dr. Dirk Büssis | Max-Planck-Institut
Weitere Informationen:
http://www.mpimp-golm.mpg.de

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich prüfen
14.06.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie