Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwere Forstmaschinen das Leben im Waldboden verändern

02.10.2013
Der Einsatz schwerer Holzerntemaschinen in der Waldbewirtschaftung führt in den Fahrspuren zu einer Beeinträchtigung und oft auch erheblichen Verdichtung des Bodens.

Ein internationales Forscherteam unter der Leitung der Eidgenössischen Forschungsanstalt WSL ist der Frage nachgegangen, wie sich Waldböden und das Leben darin unter der mechanischen Belastung verändern. Die Wissenschaftler fanden heraus, dass die Folgen für den Boden, die darin lebenden Pilze und Bakterien und damit für die Baumverjüngung beträchtlich sind.


Fahrspur nach Fahrexperiment mit schweren Holzerntemaschinen


Verdichtetes Bodenprofil

Ertragreiche Böden mit zahlreichen luft- und wasserführenden Hohlräumen sind eine wichtige Grundlage für eine nachhaltige Waldbewirtschaftung. Ein lockerer Waldboden beherbergt unzählige Pilze, Bakterien, Regenwürmer und andere Bodenlebewesen. Diese sind unverzichtbar, denn sie garantieren die Fruchtbarkeit des Bodens. Die immer schwereren Holzerntemaschinen jedoch verdichten, wenn sie zum falschen Zeitpunkt eingesetzt werden, den Unterboden oft massiv. "Bisher wussten wir nur wenig darüber, wie sich die zunehmende Belastung auf das Leben im Boden auswirkt", erklärt Martin Hartmann, Bodenmikrobiologe an der WSL. "Deswegen haben wir mit neuen genetischen Methoden untersucht, wie die Verdichtung des Bodens die darin lebenden Organismen beeinflusst". An dem internationalen Forschungsprojekt waren neben der WSL auch die Forschungsanstalt Agroscope Zürich-Reckenholz und die Universitäten Zürich, Tartu (Estland) und die TU München beteiligt.

Die Forschenden legten mit Holzerntemaschinen Fahrspuren auf zwei Waldböden im schweizerischen Mittelland an. Vor den Fahrversuchen wurden die Waldböden unterschiedlich stark bewässert, um verschiedene Feuchtezustände zu simulieren. Denn bei feuchten Böden sinken die Räder wesentlich tiefer ein und verdichten den Boden stärker als bei trockenen Böden. "Direkt vor und in den vier Jahren nach den Versuchen haben wir wiederholt zahlreiche Bodenproben in und neben den Fahrspuren genommen", sagt Martin Hartmann. Die Forschenden untersuchten den bodenphysikalischen Zustand und den Gasaustausch zwischen Boden und Atmosphäre. Durch den enormen Fortschritt der letzten Jahre auf dem Gebiet der Erbsubstanz-Sequenzierung war es zudem möglich, die gewaltige Zahl an Mikroorganismen im Boden detailliert zu analysieren. "Die neuen Technologien erschliessen eine bisher unzugängliche Wissenswelt über das mikrobielle Leben im Waldboden", ist Martin Hartmann überzeugt.

Wird es eng, verschwinden viele wichtige Pilzarten

Die Ergebnisse zeigen, dass sich Waldböden unter mechanischer Belastung deutlich verändern. Einfach gesagt: Im Boden wird es eng. Hohlräume werden zusammengepresst und die Vernetzung der Poren im Boden zerstört. Folglich wird der Luftaustausch weitgehend unterbrochen und der Wasserfluss erheblich reduziert. Die Lebensbedingungen für die meisten Pilze und Bakterien verändern sich drastisch. Die für das Baumwachstum wichtigen Mykorrhizapilze zum Beispiel verschwinden nach starker Belastung fast vollständig. An ihrer Stelle breiten sich Fäulnisbakterien aus, die das Baumwachstum massgeblich hemmen. Und da nur noch wenig Luft im Boden vorhanden ist, vermehren sich diejenigen Bakterienarten, die an sauerstoffarme Verhältnisse angepasst sind und Lachgas und Methan produzieren.

Die grössten Beeinträchtigungen der Bodenlebewesen beobachteten die Forschenden sechs bis zwölf Monate nach den Fahrversuchen. Nach vier Jahren hatten sich einige Bakterienarten wieder erholt, andere Bakterien jedoch sowie die meisten Pilze litten weiterhin unter der Verdichtung. Die Forschenden gehen sogar davon aus, dass Jahrzehnte bis Jahrhunderte vergehen werden, bis sich Böden nach starken Belastungen wieder vollständig erholen.

Bodenschutz gewinnt zunehmend an Bedeutung

Ein zunehmend wichtiger Aspekt der Waldbewirtschaftung ist daher der Bodenschutz, um die Fruchtbarkeit des Bodens zu erhalten. Eine Schlüsselfrage ist, ab welcher Belastung der Boden dauerhaft geschädigt ist. Die neuen Erkenntnisse ermöglichen, ein exzellentes Frühwarnsystem zu entwickeln, um nachteilige Bodenveränderungen rechtzeitig zu erkennen. Insbesondere die Methan-produzierenden Bakterien sind gute Indikatoren, um eine Überlastung des Bodens aufzuzeigen. Ausserdem können die Ergebnisse dazu beitragen, die Waldbewirtschaftung zu optimieren. Welche Ausrüstung, welche Maschinen sollen auf unterschiedlichen Waldböden eingesetzt werden und wann ist der optimale Zeitpunkt zum Befahren des Waldbodens?

Kontakt

Ivano Brunner
ivano.brunner@wsl.ch
Beat Frey
beat.frey@wsl.ch

Dr. Reinhard Lässig | Eidg. Forschungsanstalt WSL
Weitere Informationen:
http://www.wsl.ch
http://www.waldwissen.net
http://www.wsl.ch/medien/news/Bodenverdichtung/index_DE

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Getreide, das der Dürre trotzt
19.09.2017 | Universität Wien

nachricht BMEL verstärkt Maßnahmen im Kampf gegen das Eschentriebsterben
11.09.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie