Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Resistenzen von wilden Verwandten nutzbar machen

27.11.2012
Forschern ist es gelungen, kultivierte Tomaten widerstandsfähiger gehen Schädlinge zu machen. Dafür kreuzten sie diese mit Wildtomaten, die einen für Fressfeinde giftigen Abwehrstoff produzieren. Die Forscher identifizierten den Syntheseweg dieses Stoffs, der den Pflanzen bei der Abwehr der Feinde hilft und führten die relevanten Gene in den kultivierten Tomatenpflanzen ein.

Die Pflanzenzüchtung hat bereits viel dazu beigetragen, die Qualität von Tomaten (Solanum lycopersicum) zu verbessern (z.B. das Aroma der Früchte) und deren Ernteerträge zu steigern. Ein weiteres Zuchtziel ist es, die Tomaten widerstandsfähiger zu machen. Dazu werden oft wünschenswerte Eigenschaften von wilden Verwandten eingekreuzt.

Wildtomaten sind zwar nicht so ertragreich wie die Kulturtomaten, dafür verfügen sie jedoch über eine große genetische Diversität, durch die sie besser auf schädigende Umwelteinflüsse reagieren können. Darunter auch Gene für die Abwehr von Schädlingen. Bei der Kultivierung der Tomate gingen vermutlich viele dieser ursprünglichen Wildtomaten-Gene verloren.

Verbesserung der Widerstandsfähigkeit gegenüber Schädlingen

Zu den bedeutendsten Schädlingen der kultivierten Tomaten zählen Weiße Fliegen, Spinnmilben und Blattläuse. Diese Fressfeinde durchlöchern nicht nur die Blätter und Früchte der Pflanze, sondern übertragen auch Pflanzenviren. Die Schädlinge können also große wirtschaftliche Schäden anrichten.

Wie halten sich die Wildpflanzen Schädlinge von Leibe?
Um kultivierte Tomaten resistenter gegenüber Schädlingen zu machen, statteten Forscher Tomaten der Kultursorte „Moneymaker“ mit einem natürlichen Abwehrmechanismus der Wildtomatensorte Solanum habrochaites aus.

Die Wildtomate Solanum habrochaites produziert einen für Insekten giftigen Stoff (7-Epizingiberen). 7-Epizingiberen wird chemisch den Terpenen (genauer: den Sesquiterpenen) zugeschrieben. Terpene bilden die größte Gruppe der sogenannten sekundären Pflanzenstoffe. Sie sind für die Pflanze nicht lebensnotwenig, aber sie übernehmen wichtige Funktionen, z.B. bei der Abwehr von schädlichen Insekten. Der toxische Stoff wird in den Drüsenhaaren (Trichome), die sich auf den Blättern und Stängeln der Tomatenpflanzen befinden, produziert und gespeichert. Kultivierte Tomaten können 7-Epizingiberen jedoch nicht bilden.

Nachkommen sind widerstandsfähiger
Kreuzten die Wissenschaftler „Moneymaker“ Tomaten mit Wildtomaten, produzierte deren Nachkommen (F2-Generation) den für die Insektenabwehr wichtigen Stoff 7-Epizingiberen.

Die Forscher testeten daraufhin, ob die so entstandenen Pflanzen sich gegen Schädlinge besser zur Wehr setzen können. Sie setzten dazu Tabakmottenschildläuse (oder Tabak-Weiße Fliegen, Bemisia tabaci) auf den Pflanzen aus und stellten fest, dass bereits bei geringeren 7-Epizingiberen-Konzentrationen als in der Wildtomate, nach fünf Tagen bis zu 70 Prozent der Schädlinge gestorben waren. Diese Ergebnisse zeigen, dass auch geringere Konzentrationen an 7-Epizingiberen die Pflanzen gegen ihre Feinde widerstandsfähiger machten. Auch die Anzahl der abgelegten Eier reduzierte sich um bis zu 74 Prozent.

Wie wird 7-Epizingiberen produziert?

Da 7-Epizingiberen nur in den Wildtomaten gebildet wurde und nicht in den kultivierten, interessierte die Forscher, wo und wie der Stoff genau gebildet wird. Die Forscher identifizierten den Biosyntheseweg – d.h. den Aufbauprozess dieses komplexen Stoffes – und stellten fest, dass 7-Epizingiberen in den Plastiden der Drüsenhaare produziert wird.

Die Analyse des Biosynthesewegs zeigte, dass eine ganz neue Enzymklasse am Aufbau von 7-Epizingiberen beteiligt ist. Darunter ein Enzym (Synthase), das die Bildung von 7-Epizingiberen beschleunigt. Die Nachkommen im Experiment erbten also von den Wildtomaten die Gene, die diese spezielle Synthase bilden und konnten daraufhin 7-Epizingiberen produzieren. Das Gen war demnach im Erbgut der kultivierten Tomaten nicht mehr enthalten, wodurch die Tomaten diese Abwehrstoffe nicht mehr bilden konnten.

Pflanzen schützen sich selbst

Weiß man wie und wo Abwehrstoffe in Wildtomaten gebildet werden, ließen sich diese Abwehrmechanismen gezielt in kultivierten Tomatensorten einführen. Das genetische Potential der Wildtomate könnte demnach helfen, ertragreiche und widerstandsfähigere Kultursorten zu züchten, die sich mit geringerem Insektizideinsatz kultivieren ließen.
Quelle:
Bleeker, P. M. et al. (2012): Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. In: PNAS, 19. November 2012, doi: 10.1073/pnas.1208756109.

Bleeker, P. M. et al | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/resistenzen-von-wilden-verwandten-nutzbar-machen?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten