Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Funktionen der Infektionsstadien von Colletotrichum-Pilzen entdeckt

21.08.2012
Pilze der Gattung Colletotrichum sind weltweit gefürchtete Pflanzenschädlinge. Ein Genom- und Transkriptomvergleich zeigt, dass selbst nah verwandte Arten ihre Genausstattung für unterschiedliche Infektionsstrategien einsetzen. Die Analyse enthüllte auch neue Funktionen für die frühen Hyphenstadien und das Haftorgan des Pilzes.

Viele der etwa 600 Colletotrichum-Arten lösen Stängelfäule und die Brennfleckenkrankheit aus und sorgen bei wichtigen Nutzpflanzen wie Mais, Kartoffel und Kaffee für katastrophale Missernten. Allein in den USA verursacht die auf Mais spezialisierte Pilzkrankheit Colletotrichum graminicola ökonomische Schäden in Milliardenhöhe.


Beim Maisanbau versursacht der Pilz C. graminicola weltweit Schäden in Milliardenhöhe (Quelle: © Janeela / pixelio.de).

Mit seinen Hyphen durchbohrt der Pilz die Wände der Wirtszellen und zerstört deren Inneres mit Hilfe von zersetzenden Enzymen. Das absterbende Gewebe dient dem Pilz als Nahrungsquelle für die Ausbildung von Sporen und weiterer Pilzfäden.

Bei der Attacke auf ihre Wirte aktivieren Colletotrichum-Arten jedoch ganz unterschiedliche genetische Infektionsprogramme. Dies haben Wissenschaftler herausgefunden, die die Genome zweier Colletotrichum-Vertreter entschlüsselten und mit den Daten einer Transkriptomanalyse kombinierten. Transkriptomanalysen basieren auf dem Prinzip der RNA-Sequenzierung und erfassen demnach alle Gene, die aktiv in RNA-Moleküle umgeschrieben werden. Sie liefern so gewissermaßen eine Momentaufnahme der genetischen Aktivität von Geweben und Zellen.

Biotrophe und Zerstörungsstadien sind entweder zeitlich oder räumlich voneinander getrennt

Forschungsobjekte der Studie waren die Colletotrichum-Vertreter C. graminicola und C. higginsianum. Obwohl die beiden Arten nahe Verwandte sind und sich in ihrem Erscheinungsbild ähneln, unterscheiden sie sich in ihrem Wirtsspektrum und ihren Infektionsstrategien. C. higginsianum befällt unterschiedliche Arten der Familie der Kreuzblütler, zu denen auch die Ackerschmalwand gehört. Die Modellpflanze diente den Forschern in ihrer Studie als Wirt. Die Zellen dieser Pilzart durchlaufen drei Infektionssphasen: Die keimende Spore bildet zunächst knollige, biotrophe Hyphen aus, die die Cuticula der Blätter durchstoßen und in die Epidermiszellen eindringen. In der zweiten Phase beginnt der Pilz mit der Vermehrung seiner Hyphen. Dabei bleibt die Plasmamembran der Pflanzenzelle vorerst intakt. Schon nach wenigen Stunden differenzieren sich die Hyphen jedoch zu dünnen, schnell wachsenden Pilzfäden, die die gesamte Zelle durchdringen und mit der Zerstörung des Gewebes beginnen.
Anders als bei C. higginsianum sind die biotrophen und nekrotisierenden Hyphen bei dem auf Mais spezialisierten C. graminicola Pilz räumlich voneinander getrennt. Während sich am Rande der Pilzkolonie biotrophe Hyphen ausbilden, beginnen die Zellen im Inneren mit der Zerstörung der Pflanzenzellen.

Transkriptomanalyse zeigt neue Funktionen auf

Mittels der Transkriptomanalyse konnten die Wissenschaftler das An- und Abschalten bestimmter Gene während des Pilzzyklus genau verfolgen und somit auch Rückschlüsse auf die Funktion der unterschiedlichen Stadien ziehen. Bereits im frühen, biotrophen Stadium aktivieren die Pilzzellen besonders viele Effektor-Gene und Gene sekundärer Stoffwechselprodukte. Effektorproteine programmieren die Wirtszelle so um, dass das Immunsystem der Pflanze den Angreifer nicht abwehren kann. Dass diese Gene bereits in diesem frühen Stadium abgelesen werden, sehen die Wissenschaftler als Hinweis, dass die biotrophen Hyphen als Kontaktfläche fungieren. Anscheinend schleust der Pilz auf diese Weise manipulierende Botenmoleküle in die Wirtszelle ein, um diese für die Übernahme vorzubereiten.

Sogar in den Haftorganen der Pilzsporen, dem Appressorium, wurden diese Gene bereits aktiviert, wie die Studie zeigt. Mit Hilfe dieser Haftscheibe pressen sich die Keimschläuche des Pilzes in das Innere des Blattes. Wie die Forscher entdeckten, sind die Effektorgene im Appressorium jedoch nur aktiv, wenn sich das Appressorium an ein Blatt heftet. An eine Plastikscheibe geheftet, schalteten es auf ein anderes genetisches Programm um. Die Haftscheiben haben demzufolge vermutlich eine zusätzliche Funktion, die bisher von Pflanzenforschern unentdeckt blieb. Sie fungieren als Sensoren und signalisieren dem Pilz, der durch Wind und Regen übertragen wird, ob er tatsächlich auf einem Blatt gelandet ist. Die Tatsache, dass C. higginsianum über ein größeres Repertoire an Effektoren verfügt als C. graminicola erklären die Forscher mit der Anpassung an ein breiteres Wirtsspektrum.

Nahe verwandte Arten setzen ihr Arsenal an Infektionsgenen unterschiedlich ein

Nach der biotrophen Phase stellen die Pilze ihren Stoffwechsel um und aktivieren die Gene lytischer Enzyme. Zu diesen gehören beispielsweise Gene der Hemizellulasen, mit denen die Pilze die pflanzliche Zellwand angreifen. Obwohl beide Arten ähnlich viele dieser Gene besitzen, aktiviert C. graminicola eine größere Anzahl, da Maispflanzen mehr Hemizellulose in ihren Zellwänden anreichern. Im Genom von C. higginsianum befinden sich dafür doppelt so viele Gene für den Pektinabbau, da Pektin einer der Hauptbestandteile in den Zellwänden dikotyler Pflanzen ist, die C. higginsianum bevorzugt befällt.

Neu identifizierte CAZymes könnten Biosprit-Produktion effizienter machen

Eine weitere Gengruppe, die während der Zersetzungsphase besonders aktiv ist, sind die Carbohydrate Active Enzymes (CAZymes), mit denen die Pilze Polysaccharide der Pflanzenzellwand spalten. In den Genomen beider Pilzarten entdeckten die Wissenschaftler mehr CAZymes-Gene, als in allen anderen Pilzgenomen, die das Team analysierte. Die identifizierten CAZymes können möglicherweise auch für neue kommerzielle Entwicklungen genutzt werden. Bei der großtechnischen Gewinnung von Biosprit müssen bisher teure hydrolytische Enzyme zugesetzt werden, um die pflanzlichen Zellwände zu verdauen. Mit kommerziell nutzbaren CAZymes ließe sich dieser Abbau möglicherweise auf kostengünstigere Weise beschleunigen und die Ausbeute an Biosprit und Bioprodukten erhöhen. Die früh exprimierten sekundären Stoffwechselprodukte der Pilze könnten zudem neue Angriffspunkte für den Pflanzenschutz liefern.

Den kombinierten Ansatzes von Genom- und Transkriptomanalyse wollen die Wissenschaftler zukünftig beibehalten, um die Lebenszyklen anderer Pflanzenschädlinge zu erforschen. Ähnlich wie C. higginsianum durchläuft beispielsweise auch der Reispilz Magnaporthe oryzae unterschiedliche Infektionsformen. Auf diese Weise hoffen die Forscher, Schwachstellen bei den Infektionsstrategien der Pilze aufzuspüren, um resistentere Pflanzensorten zu züchten.

Quellen:

O`Conell, R. et al. (2012): Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. In: Nature Genetics. Online Publikation, August 2012, DOI: 10.1038/ng.2372.

King, B.C. et al. (2012): Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. In: Biotechnolgy for Biofuels. Online Publikation, August 2012, DOI: 10.1186/1754-6834-4-4.

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/neue-funktionen-der-infektionsstadien-von-colletotrichum-pilzen-entdeckt?piwik_campai

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Die smarte klassische Landhausvilla
28.11.2016 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Kleinbauern setzen verstärkt auf Monokulturen
10.11.2016 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie