Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Funktionen der Infektionsstadien von Colletotrichum-Pilzen entdeckt

21.08.2012
Pilze der Gattung Colletotrichum sind weltweit gefürchtete Pflanzenschädlinge. Ein Genom- und Transkriptomvergleich zeigt, dass selbst nah verwandte Arten ihre Genausstattung für unterschiedliche Infektionsstrategien einsetzen. Die Analyse enthüllte auch neue Funktionen für die frühen Hyphenstadien und das Haftorgan des Pilzes.

Viele der etwa 600 Colletotrichum-Arten lösen Stängelfäule und die Brennfleckenkrankheit aus und sorgen bei wichtigen Nutzpflanzen wie Mais, Kartoffel und Kaffee für katastrophale Missernten. Allein in den USA verursacht die auf Mais spezialisierte Pilzkrankheit Colletotrichum graminicola ökonomische Schäden in Milliardenhöhe.


Beim Maisanbau versursacht der Pilz C. graminicola weltweit Schäden in Milliardenhöhe (Quelle: © Janeela / pixelio.de).

Mit seinen Hyphen durchbohrt der Pilz die Wände der Wirtszellen und zerstört deren Inneres mit Hilfe von zersetzenden Enzymen. Das absterbende Gewebe dient dem Pilz als Nahrungsquelle für die Ausbildung von Sporen und weiterer Pilzfäden.

Bei der Attacke auf ihre Wirte aktivieren Colletotrichum-Arten jedoch ganz unterschiedliche genetische Infektionsprogramme. Dies haben Wissenschaftler herausgefunden, die die Genome zweier Colletotrichum-Vertreter entschlüsselten und mit den Daten einer Transkriptomanalyse kombinierten. Transkriptomanalysen basieren auf dem Prinzip der RNA-Sequenzierung und erfassen demnach alle Gene, die aktiv in RNA-Moleküle umgeschrieben werden. Sie liefern so gewissermaßen eine Momentaufnahme der genetischen Aktivität von Geweben und Zellen.

Biotrophe und Zerstörungsstadien sind entweder zeitlich oder räumlich voneinander getrennt

Forschungsobjekte der Studie waren die Colletotrichum-Vertreter C. graminicola und C. higginsianum. Obwohl die beiden Arten nahe Verwandte sind und sich in ihrem Erscheinungsbild ähneln, unterscheiden sie sich in ihrem Wirtsspektrum und ihren Infektionsstrategien. C. higginsianum befällt unterschiedliche Arten der Familie der Kreuzblütler, zu denen auch die Ackerschmalwand gehört. Die Modellpflanze diente den Forschern in ihrer Studie als Wirt. Die Zellen dieser Pilzart durchlaufen drei Infektionssphasen: Die keimende Spore bildet zunächst knollige, biotrophe Hyphen aus, die die Cuticula der Blätter durchstoßen und in die Epidermiszellen eindringen. In der zweiten Phase beginnt der Pilz mit der Vermehrung seiner Hyphen. Dabei bleibt die Plasmamembran der Pflanzenzelle vorerst intakt. Schon nach wenigen Stunden differenzieren sich die Hyphen jedoch zu dünnen, schnell wachsenden Pilzfäden, die die gesamte Zelle durchdringen und mit der Zerstörung des Gewebes beginnen.
Anders als bei C. higginsianum sind die biotrophen und nekrotisierenden Hyphen bei dem auf Mais spezialisierten C. graminicola Pilz räumlich voneinander getrennt. Während sich am Rande der Pilzkolonie biotrophe Hyphen ausbilden, beginnen die Zellen im Inneren mit der Zerstörung der Pflanzenzellen.

Transkriptomanalyse zeigt neue Funktionen auf

Mittels der Transkriptomanalyse konnten die Wissenschaftler das An- und Abschalten bestimmter Gene während des Pilzzyklus genau verfolgen und somit auch Rückschlüsse auf die Funktion der unterschiedlichen Stadien ziehen. Bereits im frühen, biotrophen Stadium aktivieren die Pilzzellen besonders viele Effektor-Gene und Gene sekundärer Stoffwechselprodukte. Effektorproteine programmieren die Wirtszelle so um, dass das Immunsystem der Pflanze den Angreifer nicht abwehren kann. Dass diese Gene bereits in diesem frühen Stadium abgelesen werden, sehen die Wissenschaftler als Hinweis, dass die biotrophen Hyphen als Kontaktfläche fungieren. Anscheinend schleust der Pilz auf diese Weise manipulierende Botenmoleküle in die Wirtszelle ein, um diese für die Übernahme vorzubereiten.

Sogar in den Haftorganen der Pilzsporen, dem Appressorium, wurden diese Gene bereits aktiviert, wie die Studie zeigt. Mit Hilfe dieser Haftscheibe pressen sich die Keimschläuche des Pilzes in das Innere des Blattes. Wie die Forscher entdeckten, sind die Effektorgene im Appressorium jedoch nur aktiv, wenn sich das Appressorium an ein Blatt heftet. An eine Plastikscheibe geheftet, schalteten es auf ein anderes genetisches Programm um. Die Haftscheiben haben demzufolge vermutlich eine zusätzliche Funktion, die bisher von Pflanzenforschern unentdeckt blieb. Sie fungieren als Sensoren und signalisieren dem Pilz, der durch Wind und Regen übertragen wird, ob er tatsächlich auf einem Blatt gelandet ist. Die Tatsache, dass C. higginsianum über ein größeres Repertoire an Effektoren verfügt als C. graminicola erklären die Forscher mit der Anpassung an ein breiteres Wirtsspektrum.

Nahe verwandte Arten setzen ihr Arsenal an Infektionsgenen unterschiedlich ein

Nach der biotrophen Phase stellen die Pilze ihren Stoffwechsel um und aktivieren die Gene lytischer Enzyme. Zu diesen gehören beispielsweise Gene der Hemizellulasen, mit denen die Pilze die pflanzliche Zellwand angreifen. Obwohl beide Arten ähnlich viele dieser Gene besitzen, aktiviert C. graminicola eine größere Anzahl, da Maispflanzen mehr Hemizellulose in ihren Zellwänden anreichern. Im Genom von C. higginsianum befinden sich dafür doppelt so viele Gene für den Pektinabbau, da Pektin einer der Hauptbestandteile in den Zellwänden dikotyler Pflanzen ist, die C. higginsianum bevorzugt befällt.

Neu identifizierte CAZymes könnten Biosprit-Produktion effizienter machen

Eine weitere Gengruppe, die während der Zersetzungsphase besonders aktiv ist, sind die Carbohydrate Active Enzymes (CAZymes), mit denen die Pilze Polysaccharide der Pflanzenzellwand spalten. In den Genomen beider Pilzarten entdeckten die Wissenschaftler mehr CAZymes-Gene, als in allen anderen Pilzgenomen, die das Team analysierte. Die identifizierten CAZymes können möglicherweise auch für neue kommerzielle Entwicklungen genutzt werden. Bei der großtechnischen Gewinnung von Biosprit müssen bisher teure hydrolytische Enzyme zugesetzt werden, um die pflanzlichen Zellwände zu verdauen. Mit kommerziell nutzbaren CAZymes ließe sich dieser Abbau möglicherweise auf kostengünstigere Weise beschleunigen und die Ausbeute an Biosprit und Bioprodukten erhöhen. Die früh exprimierten sekundären Stoffwechselprodukte der Pilze könnten zudem neue Angriffspunkte für den Pflanzenschutz liefern.

Den kombinierten Ansatzes von Genom- und Transkriptomanalyse wollen die Wissenschaftler zukünftig beibehalten, um die Lebenszyklen anderer Pflanzenschädlinge zu erforschen. Ähnlich wie C. higginsianum durchläuft beispielsweise auch der Reispilz Magnaporthe oryzae unterschiedliche Infektionsformen. Auf diese Weise hoffen die Forscher, Schwachstellen bei den Infektionsstrategien der Pilze aufzuspüren, um resistentere Pflanzensorten zu züchten.

Quellen:

O`Conell, R. et al. (2012): Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. In: Nature Genetics. Online Publikation, August 2012, DOI: 10.1038/ng.2372.

King, B.C. et al. (2012): Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. In: Biotechnolgy for Biofuels. Online Publikation, August 2012, DOI: 10.1186/1754-6834-4-4.

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/neue-funktionen-der-infektionsstadien-von-colletotrichum-pilzen-entdeckt?piwik_campai

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Wurmmittel für Weidetiere können die Keimung von Pflanzensamen beeinflussen
27.04.2017 | Universität Trier

nachricht Erstmals Studie zu Hai- und Rochenarten in deutschen Meeren
19.04.2017 | Bundesamt für Naturschutz

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie