Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Maisgen vervielfacht das Potenzial anderer Energiepflanzen

18.10.2011
Corngrass1 verhindert die Blüte und steigert den Stärkegehalt um 250 Prozent, wenn Forscher das Gen in Rutenhirse transferieren.

Ein Gen aus Mais kann das Potenzial anderer Energiepflanzen vervielfachen, wenn es dorthin transferiert wird. Das berichten Forscher im Fachmagazin „PNAS“. Die Wissenschaftler hatten das Maisgen Corngrass1 (Cg1) in verschiedene Pflanzen übertragen, überexprimiert so das dieses verstärkt abgelesen wird und dann deren Zuckergehalt analysiert.

Zu den Versuchspflanzen zählte auch die Rutenhirse, die in den USA zur Ethanolgewinnung genutzt wird. Diese im englischen „Switchgrass“ genannte Pflanze zählt zu den Hoffnungsträgern der Bioenergiewirtschaft. Als quasi Wildpflanze wird sie seit einigen Jahren für den Feldanbau fit gemacht. Einer ihrer großen Vorteile ist, dass Rutenhirse in keiner direkten Konkurrenz zu Nahrungspflanzen steht. Die Blätter der Pflanzen, die Cg1 exprimierten, ähnelten strukturell und chemisch jungen Blättern, wodurch sie leichter in einfache Zucker wie Glukose zersetzt werden können, aus denen Ethanol produziert wird. Dieser Effekt wird von einer microRNA erzeugt, für die Cg1 kodiert, und ist entscheidend für die Ethanolgewinnung: Normalerweise sind die dazu genutzten Zucker in Form von Polysacchariden im Lignin ausgereifter Zellwände gebunden und so nicht bequem in Einfachzucker zu zerlegen.

Zudem wuchsen Pflanzen mit Cg1 verzweigter und produzierten verglichen mit Exemplaren ohne Cg1 250 Prozent mehr Stärke in ihren Stängeln. Aus der Stärke konnten die Forscher ohne teure und energieintensive vorherige Behandlung des Pflanzengewebes Glukose erzeugen.

Auch führte das Cg1-Gen dazu, dass die Rutenhirse keine Blüten ausbildete. Dadurch spart die Pflanze Ressourcen, die sie normalerweise für Blüte und Frucht aufwendet. Diese Ressourcen kann die Rutenhirse in zusätzliche Stärke umsetzen. Zudem hat das Ausbleiben der Blüte noch einen praktischen Nebeneffekt: Ein unbeabsichtigtes Auskreuzen des Transgens in Wildpopulationen ist ausgeschlossen. Weshalb Cg1 die Blüte unterdrückt, konnten die Forscher bislang noch nicht klären – zumal das Phänomen weder bei Mais, Reis noch Ackerschmalwand auftrat.

Rutenhirse mit Cg1-Gen wäre demnach ein verbesserter Ausgangsstoff für die Ethanolherstellung, so das Fazit der Autoren. Und nicht nur die Rutenhirse: Das Maisgen sollte sich mit vergleichbarem Effekt auch auf andere Energiepflanzen übertragen lassen, spekulieren die Forscher. Natürlicherweise komme Cg1 nämlich nur in Grasarten vor.

Rutenhirse erzeugt nach Berechnung des US-Landwirtschaftsministeriums das Fünffache an Energie in Form von Ethanol, wie für den Anbau erforderlich ist. Zudem ist die mehrjährige Pflanze hinsichtlich des Bodens recht anspruchslos und steht als reine Energiepflanze nicht in Nutzungskonkurrenz mit der Nahrungsmittelproduktion.

Quelle:
George S. Chucka et al. (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass; PNAS (Early Edition)

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/ein-maisgen-vervielfacht-das-potenzial-anderer-energiepflanzen?piwik_campaign=newslet

Weitere Berichte zu: Blüte Cg1-Gen Corngrass1 Energiepflanze Ethanolgewinnung Mais Maisgen Pflanze Rutenhirse

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Getreide, das der Dürre trotzt
19.09.2017 | Universität Wien

nachricht BMEL verstärkt Maßnahmen im Kampf gegen das Eschentriebsterben
11.09.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie