Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Maisgen vervielfacht das Potenzial anderer Energiepflanzen

18.10.2011
Corngrass1 verhindert die Blüte und steigert den Stärkegehalt um 250 Prozent, wenn Forscher das Gen in Rutenhirse transferieren.

Ein Gen aus Mais kann das Potenzial anderer Energiepflanzen vervielfachen, wenn es dorthin transferiert wird. Das berichten Forscher im Fachmagazin „PNAS“. Die Wissenschaftler hatten das Maisgen Corngrass1 (Cg1) in verschiedene Pflanzen übertragen, überexprimiert so das dieses verstärkt abgelesen wird und dann deren Zuckergehalt analysiert.

Zu den Versuchspflanzen zählte auch die Rutenhirse, die in den USA zur Ethanolgewinnung genutzt wird. Diese im englischen „Switchgrass“ genannte Pflanze zählt zu den Hoffnungsträgern der Bioenergiewirtschaft. Als quasi Wildpflanze wird sie seit einigen Jahren für den Feldanbau fit gemacht. Einer ihrer großen Vorteile ist, dass Rutenhirse in keiner direkten Konkurrenz zu Nahrungspflanzen steht. Die Blätter der Pflanzen, die Cg1 exprimierten, ähnelten strukturell und chemisch jungen Blättern, wodurch sie leichter in einfache Zucker wie Glukose zersetzt werden können, aus denen Ethanol produziert wird. Dieser Effekt wird von einer microRNA erzeugt, für die Cg1 kodiert, und ist entscheidend für die Ethanolgewinnung: Normalerweise sind die dazu genutzten Zucker in Form von Polysacchariden im Lignin ausgereifter Zellwände gebunden und so nicht bequem in Einfachzucker zu zerlegen.

Zudem wuchsen Pflanzen mit Cg1 verzweigter und produzierten verglichen mit Exemplaren ohne Cg1 250 Prozent mehr Stärke in ihren Stängeln. Aus der Stärke konnten die Forscher ohne teure und energieintensive vorherige Behandlung des Pflanzengewebes Glukose erzeugen.

Auch führte das Cg1-Gen dazu, dass die Rutenhirse keine Blüten ausbildete. Dadurch spart die Pflanze Ressourcen, die sie normalerweise für Blüte und Frucht aufwendet. Diese Ressourcen kann die Rutenhirse in zusätzliche Stärke umsetzen. Zudem hat das Ausbleiben der Blüte noch einen praktischen Nebeneffekt: Ein unbeabsichtigtes Auskreuzen des Transgens in Wildpopulationen ist ausgeschlossen. Weshalb Cg1 die Blüte unterdrückt, konnten die Forscher bislang noch nicht klären – zumal das Phänomen weder bei Mais, Reis noch Ackerschmalwand auftrat.

Rutenhirse mit Cg1-Gen wäre demnach ein verbesserter Ausgangsstoff für die Ethanolherstellung, so das Fazit der Autoren. Und nicht nur die Rutenhirse: Das Maisgen sollte sich mit vergleichbarem Effekt auch auf andere Energiepflanzen übertragen lassen, spekulieren die Forscher. Natürlicherweise komme Cg1 nämlich nur in Grasarten vor.

Rutenhirse erzeugt nach Berechnung des US-Landwirtschaftsministeriums das Fünffache an Energie in Form von Ethanol, wie für den Anbau erforderlich ist. Zudem ist die mehrjährige Pflanze hinsichtlich des Bodens recht anspruchslos und steht als reine Energiepflanze nicht in Nutzungskonkurrenz mit der Nahrungsmittelproduktion.

Quelle:
George S. Chucka et al. (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass; PNAS (Early Edition)

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/ein-maisgen-vervielfacht-das-potenzial-anderer-energiepflanzen?piwik_campaign=newslet

Weitere Berichte zu: Blüte Cg1-Gen Corngrass1 Energiepflanze Ethanolgewinnung Mais Maisgen Pflanze Rutenhirse

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Nitrat-Problem der Landwirtschaft in Luft auflösen
29.03.2018 | Karlsruher Institut für Technologie

nachricht Sanitärhiebe im Wald: oft vorgeschobener Grund für Holzernte
27.03.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics